This repository was archived by the owner on Feb 23, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathannotate.rs
3380 lines (3156 loc) · 118 KB
/
annotate.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2021 10X Genomics, Inc. All rights reserved.
// This file contains code to annotate a contig, in the sense of finding alignments
// to VDJ reference contigs. Also to find CDR3 sequences. And some related things.
use crate::transcript::is_valid;
use crate::{refx::RefData, transcript::ContigStatus};
use align_tools::affine_align;
use amino::{aa_seq, have_start};
use bio_edit::alignment::AlignmentOperation::{Del, Ins, Match, Subst, Xclip, Yclip};
use debruijn::{
dna_string::{DnaString, DnaStringSlice},
kmer::{Kmer12, Kmer20},
Mer, Vmer,
};
use io_utils::{fwrite, fwriteln};
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use stats_utils::percent_ratio;
use std::fmt::Write as _;
use std::{
cmp::{max, min},
fs::File,
io::{BufWriter, Write},
};
use string_utils::{stringme, strme, TextUtils};
use vdj_types::{VdjChain, VdjRegion};
use vector_utils::{
bin_member, erase_if, lower_bound1_3, next_diff12_4, next_diff1_2, next_diff1_3, next_diff1_5,
reverse_sort, unique_sort, VecUtils,
};
// ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
// START CODONS
// ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
pub fn print_start_codon_positions(tig: &DnaString, log: &mut Vec<u8>) {
let mut starts = Vec::<usize>::new();
if tig.len() < 3 {
return;
}
for i in 0..tig.len() - 3 {
if have_start(tig, i) {
starts.push(i);
}
}
fwriteln!(log, "start codons at {}", starts.iter().format(", "));
}
// ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
// ASSIGN CHAIN TYPE
// ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
// Assign a chain type to a given DNA sequence b.
//
// The chain type is either -1, meaning unassigned, or an index into the vector
// "IGH","IGK","IGL","TRA","TRB","TRD","TRG"
// representing a forward alignment to the chain type, or 7 + such an index,
// representing a reverse alignment.
//
// This takes as input the sequence b, plus the following auxiliary data
// structures:
// * a 20-mer kmer lookup table for the VDJ reference sequences,
// both TCR and BCR;
// * a classification vector that assigns each reference sequence to either a
// chain type index or -1.
//
// ◼ Ns are incorrectly handled. See lena 100349 for lots of examples.
pub fn chain_type(b: &DnaString, rkmers_plus_full_20: &[(Kmer20, i32, i32)], rtype: &[i32]) -> i8 {
const N: usize = 7;
let k = 20;
if b.len() < k {
return -1_i8;
}
let mut count_this = [0; 2 * N];
let brc = b.rc();
for l in 0..b.len() - k + 1 {
let mut is_type = [false; 2 * N];
for pass in 0..2 {
let z = if pass == 1 { N } else { 0 };
let x = if pass == 0 {
b.get_kmer(l)
} else {
brc.get_kmer(l)
};
let low = lower_bound1_3(rkmers_plus_full_20, &x) as usize;
for j in low..rkmers_plus_full_20.len() {
if rkmers_plus_full_20[j].0 != x {
break;
}
let t = rkmers_plus_full_20[j].1 as usize;
if rtype[t] >= 0 {
is_type[z + rtype[t] as usize] = true;
}
}
}
let mut nt = 0;
for l in 0..2 * N {
if is_type[l] {
nt += 1;
}
}
if nt == 1 {
for l in 0..2 * N {
if is_type[l] {
count_this[l] += 1;
}
}
}
}
let m = *count_this.iter().max().unwrap();
let best = count_this
.iter()
.enumerate()
.rfind(|&v| *v.1 == m)
.unwrap()
.0;
reverse_sort(&mut count_this);
if count_this[0] > count_this[1] {
best as i8
} else {
-1_i8
}
}
// ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
// ANNOTATE SEQUENCES
// ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
// Given a DnaString, enumerate matches to reference sequences. Matches are
// defined to be gap-free alignments seeded on 12-mer matches, with mismatches
// allowed in the following cases:
//
// 1. Given two successive maximal perfect matches of length >= 12 having the same
// offset, mismatches are allowed between them, so long as the error rate for
// the extended match is at most 10%.
//
// 2. We always allow extension over a single mismatch so long as 5 perfectly
// matching bases follow.
//
// However, we require a 20-mer match except for J regions.
// (see below for details)
//
// The structure of the output is:
// { ( start on sequence, match length, ref tig, start on ref tig, mismatches on sequence ) }.
pub fn annotate_seq(
b: &DnaString,
refdata: &RefData,
ann: &mut Vec<(i32, i32, i32, i32, i32)>,
allow_weak: bool,
allow_improper: bool,
abut: bool,
) {
let mut log = Vec::<u8>::new();
annotate_seq_core(
b,
refdata,
ann,
allow_weak,
allow_improper,
abut,
&mut log,
false,
);
}
fn print_alignx(log: &mut Vec<u8>, a: &(i32, i32, i32, i32, Vec<i32>), refdata: &RefData) {
let t = a.2 as usize;
let l = a.0;
let len = a.1;
let p = a.3;
let mis = a.4.len();
fwriteln!(
log,
"{}-{} ==> {}-{} on {} (mis={})",
l,
l + len,
p,
p + len,
refdata.rheaders[t],
mis
);
}
fn report_semis(
verbose: bool,
title: &str,
semi: &[(i32, i32, i32, i32, Vec<i32>)],
b_seq: &[u8],
refs: &[DnaString],
log: &mut Vec<u8>,
) {
if verbose {
fwriteln!(log, "\n{}\n", title);
for s in semi {
fwrite!(
log,
"t = {}, offset = {}, tig start = {}, ref start = {}, len = {}, mis = {}",
s.0,
s.1,
s.2,
s.1 + s.2,
s.3,
s.4.len(),
);
let t = s.0 as usize;
let off = s.1;
let tig_start = s.2;
let ref_start = off + tig_start;
let len = s.3;
let mis = &s.4;
let mut new_mis = Vec::<i32>::new();
for j in 0..len {
if b_seq[(tig_start + j) as usize] != refs[t].get((ref_start + j) as usize) {
new_mis.push(tig_start + j);
}
}
if new_mis != *mis {
fwriteln!(log, " [INVALID]");
fwriteln!(log, "computed = {}", mis.iter().format(","));
fwriteln!(log, "correct = {}", new_mis.iter().format(","));
} else {
fwriteln!(log, "");
}
}
}
}
pub fn annotate_seq_core(
b: &DnaString,
refdata: &RefData,
ann: &mut Vec<(i32, i32, i32, i32, i32)>,
allow_weak: bool,
allow_improper: bool,
abut: bool,
log: &mut Vec<u8>,
verbose: bool,
) {
// The DNA string representation is inefficient because it stores bases as packed k-mers
// which requires a lot of array bounds checks when unpacking which was a hot path
// we found when profiling the CI job. To avoid those in the inner
// loop, we unpack it once here:
let b_seq = b.to_bytes();
// Unpack refdata.
let refs = &refdata.refs;
let rheaders = &refdata.rheaders;
let rkmers_plus = &refdata.rkmers_plus;
// Heuristic constants.
const K: usize = 12;
const MIN_PERF_EXT: usize = 5;
const MAX_RATE: f64 = 0.15;
// Find maximal perfect matches of length >= 20, or 12 for J regions, so long
// as we have extension to a 20-mer with only one mismatch.
//
// perf = {(ref_id, ref_start - tig_start, tig_start, len)}
let mut perf = Vec::<(i32, i32, i32, i32)>::new();
if b.len() < K {
return;
}
for l in 0..(b.len() - K + 1) {
let x: Kmer12 = b.get_kmer(l);
let low = lower_bound1_3(rkmers_plus, &x) as usize;
for r in low..rkmers_plus.len() {
if rkmers_plus[r].0 != x {
break;
}
let t = rkmers_plus[r].1 as usize;
let p = rkmers_plus[r].2 as usize;
if l > 0 && p > 0 && b_seq[l - 1] == refs[t].get(p - 1) {
continue;
}
let mut len = K;
while l + len < b.len() && p + len < refs[t].len() {
if b_seq[l + len] != refs[t].get(p + len) {
break;
}
len += 1;
}
let mut ok = len >= 20;
if !ok && allow_weak {
let mut ext1 = len + 1;
let mut lx = l as i32 - 2;
let mut px = p as i32 - 2;
while lx >= 0 && px >= 0 {
if b_seq[lx as usize] != refs[t].get(px as usize) {
break;
}
ext1 += 1;
lx -= 1;
px -= 1;
}
let mut ext2 = len + 1;
let mut lx = l + len + 1;
let mut px = p + len + 1;
while lx < b.len() && px < refs[t].len() {
if b_seq[lx] != refs[t].get(px) {
break;
}
ext2 += 1;
lx += 1;
px += 1;
}
if ext1 >= 20 || ext2 >= 20 {
ok = true;
}
}
if ok {
perf.push((t as i32, p as i32 - l as i32, l as i32, len as i32));
}
}
}
if verbose {
fwriteln!(log, "\nINITIAL PERF ALIGNMENTS\n");
for s in perf.iter() {
fwriteln!(
log,
"t = {}, offset = {}, tig start = {}, ref start = {}, len = {}",
s.0,
s.1,
s.2,
s.1 + s.2,
s.3,
);
}
}
// Find maximal perfect matches of length >= 10 that have the same offset as a perfect match
// already found and are not equal to one of them. But only do this if we already have at
// least 150 bases aligned.
let mut offsets = Vec::<(i32, i32)>::new();
for i in 0..perf.len() {
offsets.push((perf[i].0, perf[i].1));
}
unique_sort(&mut offsets);
const MM_START: i32 = 150;
const MM: i32 = 10;
for (t, off) in offsets {
let mut tig_starts = Vec::<i32>::new();
let mut total = 0;
for pi in &perf {
if pi.0 == t && pi.1 == off {
tig_starts.push(pi.2);
total += pi.3;
}
}
if total < MM_START {
continue;
}
let r = refs[t as usize].to_bytes();
let (mut l, mut p) = (0, off);
while l <= b_seq.len() as i32 - MM {
if p + MM > r.len() as i32 {
break;
}
if p < 0 || b_seq[l as usize] != r[p as usize] {
l += 1;
p += 1;
} else {
let (mut lx, mut px) = (l + 1, p + 1);
loop {
if lx >= b_seq.len() as i32 || px >= r.len() as i32 {
break;
}
if b_seq[lx as usize] != r[px as usize] {
break;
}
lx += 1;
px += 1;
}
let len = lx - l;
if (MM..20).contains(&len) {
let mut known = false;
for k in 0..tig_starts.len() {
if l == tig_starts[k] {
known = true;
break;
}
}
if !known {
perf.push((t, p - l, l, len));
}
}
l = lx;
p = px;
}
}
}
// Sort perfect matches.
perf.sort_unstable();
if verbose {
fwriteln!(log, "\nPERF ALIGNMENTS\n");
for s in perf.iter() {
fwriteln!(
log,
"t = {}, offset = {}, tig start = {}, ref start = {}, len = {}",
s.0,
s.1,
s.2,
s.1 + s.2,
s.3,
);
}
}
// Merge perfect matches. We track the positions on b of mismatches.
// semi = {(t, off, pos on b, len, positions on b of mismatches)}
// where off = pos on ref - pos on b
let mut semi = Vec::<(i32, i32, i32, i32, Vec<i32>)>::new();
let mut i = 0;
while i < perf.len() {
let j = next_diff12_4(&perf, i as i32);
let (t, off) = (perf[i].0, perf[i].1);
let mut join = vec![false; j as usize - i];
let mut mis = vec![Vec::<i32>::new(); j as usize - i];
for k in i..j as usize - 1 {
let (l1, len1) = (perf[k].2, perf[k].3);
let (l2, len2) = (perf[k + 1].2, perf[k + 1].3);
for z in l1 + len1..l2 {
if b_seq[z as usize] != refs[t as usize].get((z + off) as usize) {
mis[k - i].push(z);
}
}
// XXX:
// println!( "\ntrying merge" );
// printme!( t, l1, l2, len1, len2, mis[k-i].len() );
if mis[k - i].len() as f64 / (l2 + len2 - l1) as f64 <= MAX_RATE {
join[k - i] = true;
}
}
let mut k1 = i;
while k1 < j as usize {
// let mut k2 = k1 + 1;
let mut k2 = k1;
let mut m = Vec::<i32>::new();
// m.append( &mut mis[k1-i].clone() );
while k2 < j as usize {
// if !join[k2-i-1] { break; }
if !join[k2 - i] {
break;
}
m.append(&mut mis[k2 - i].clone());
k2 += 1;
}
semi.push((t, off, perf[k1].2, perf[k2].2 + perf[k2].3 - perf[k1].2, m));
k1 = k2 + 1;
}
i = j as usize;
}
report_semis(verbose, "INITIAL SEMI ALIGNMENTS", &semi, &b_seq, refs, log);
// Extend backwards and then forwards.
for i in 0..semi.len() {
let t = semi[i].0;
let off = semi[i].1;
let mut l = semi[i].2;
let mut len = semi[i].3;
let mut mis = semi[i].4.clone();
while l > MIN_PERF_EXT as i32 && l + off > MIN_PERF_EXT as i32 {
let mut ok = true;
for j in 0..MIN_PERF_EXT {
if b_seq[(l - j as i32 - 2) as usize]
!= refs[t as usize].get((l + off - j as i32 - 2) as usize)
{
ok = false;
}
}
if !ok {
break;
}
mis.push(l - 1);
l -= MIN_PERF_EXT as i32 + 1;
len += MIN_PERF_EXT as i32 + 1;
while l > 0 && l + off > 0 {
if b_seq[l as usize - 1] != refs[t as usize].get((l + off - 1) as usize) {
break;
}
l -= 1;
len += 1;
}
}
while l + len < (b.len() - MIN_PERF_EXT) as i32
&& l + len + off < (refs[t as usize].len() - MIN_PERF_EXT) as i32
{
let mut ok = true;
for j in 0..MIN_PERF_EXT {
if b_seq[(l + len + j as i32 + 1) as usize]
!= refs[t as usize].get((l + off + len + j as i32 + 1) as usize)
{
ok = false;
}
}
if !ok {
break;
}
mis.push(l + len);
len += MIN_PERF_EXT as i32 + 1;
while l + len < b.len() as i32 && l + off + len < refs[t as usize].len() as i32 {
if b_seq[(l + len) as usize] != refs[t as usize].get((l + off + len) as usize) {
break;
}
len += 1;
}
}
semi[i].2 = l;
semi[i].3 = len;
semi[i].4 = mis;
}
for i in 0..semi.len() {
semi[i].4.sort_unstable();
}
// Add some 40-mers with the same offset having <= 6 mismatches.
// semi = {(t, off, pos on b, len, positions on b of mismatches)}
// where off = pos on ref - pos on b
//
// Note that implementation is asymmetric: we don't look to the right of p2, not for
// any particularly good reason.
//
// This was added to get the heavy chain V segment of the mouse A20 cell line to be annotated.
// This is dubious because the cell line is ~30 years old and of uncertain ancestry. Thus
// we're not sure if it arose from supported mouse strains or if the V segment might have
// been corrupted during the growth of the cell line. The A20 heavy chain V differs by 20%
// from the reference.
let mut i = 0;
while i < semi.len() {
let mut j = i + 1;
let t = semi[i].0;
let off = semi[i].1;
while j < semi.len() {
if semi[j].0 != t || semi[j].1 != off {
break;
}
j += 1;
}
const L: i32 = 40;
const MAX_DIFFS: usize = 6;
let p1 = off + semi[i].2;
// let p2 = off + semi[j-1].2 + semi[j-1].3;
if -off >= 0 && p1 - off <= b_seq.len() as i32 {
for p in 0..p1 - L {
let l = p - off;
let mut diffs = 0;
for m in 0..L {
if b_seq[(l + m) as usize] != refs[t as usize].get((p + m) as usize) {
diffs += 1;
if diffs > MAX_DIFFS {
break;
}
}
}
if diffs <= MAX_DIFFS {
let mut x = Vec::<i32>::new();
for m in 0..L {
if b_seq[(l + m) as usize] != refs[t as usize].get((p + m) as usize) {
x.push(l + m);
}
}
semi.push((t, off, p - off, L, x));
break;
}
}
}
i = j;
}
semi.sort();
// Allow extension over some mismatches on right if it gets us to the end on
// the reference. Ditto for left.
// ◼ Not documented above.
if allow_weak {
let max_mis = 5;
for i in 0..semi.len() {
let t = semi[i].0;
let off = semi[i].1;
let l = semi[i].2;
let mut len = semi[i].3;
let mut mis = semi[i].4.clone();
let mut mis_count = 0;
while l + len < b_seq.len() as i32 && l + len + off < refs[t as usize].len() as i32 {
if b_seq[(l + len) as usize] != refs[t as usize].get((l + off + len) as usize) {
mis.push(l + len);
mis_count += 1;
}
len += 1;
}
if mis_count <= max_mis && l + len + off == refs[t as usize].len() as i32 {
semi[i].3 = len;
semi[i].4 = mis;
}
}
for i in 0..semi.len() {
let t = semi[i].0;
let off = semi[i].1;
let mut l = semi[i].2;
let mut len = semi[i].3;
let mut mis = semi[i].4.clone();
let mut mis_count = 0;
while l > 0 && l + off > 0 {
if b_seq[(l - 1_i32) as usize] != refs[t as usize].get((l + off - 1_i32) as usize) {
mis.push(l - 1);
mis_count += 1;
}
l -= 1;
len += 1;
}
if mis_count <= max_mis && l + off == 0 {
semi[i].2 = l;
semi[i].3 = len;
semi[i].4 = mis;
}
}
for i in 0..semi.len() {
semi[i].4.sort_unstable();
}
}
report_semis(verbose, "SEMI ALIGNMENTS", &semi, &b_seq, refs, log);
// Extend between match blocks.
// ◼ This is pretty crappy. What we should do instead is arrange the initial
// ◼ extension between match blocks so it can be iterated.
let mut to_delete = vec![false; semi.len()];
for i1 in 0..semi.len() {
let t1 = semi[i1].0;
if t1 < 0 {
continue;
}
let off1 = semi[i1].1;
let (l1, len1) = (semi[i1].2, semi[i1].3);
let mis1 = semi[i1].4.clone();
for i2 in 0..semi.len() {
let t2 = semi[i2].0;
let off2 = semi[i2].1;
if t2 != t1 || off2 != off1 {
continue;
}
let (l2, len2) = (semi[i2].2, semi[i2].3);
if l1 + len1 >= l2 {
continue;
}
let mis2 = semi[i2].4.clone();
let mut mis3 = Vec::<i32>::new();
for l in l1 + len1..l2 {
if b_seq[l as usize] != refs[t1 as usize].get((l + off1) as usize) {
mis3.push(l);
}
}
let nmis = mis1.len() + mis2.len() + mis3.len();
if nmis as f64 / ((l2 + len2) - l1) as f64 > MAX_RATE {
continue;
}
semi[i1].3 = (l2 + len2) - l1;
semi[i1].4.append(&mut mis3);
semi[i1].4.append(&mut mis2.clone());
unique_sort(&mut semi[i1].4);
semi[i2].0 = -1_i32;
to_delete[i2] = true;
}
}
erase_if(&mut semi, &to_delete);
report_semis(
verbose,
"SEMI ALIGNMENTS AFTER EXTENSION",
&semi,
&b_seq,
refs,
log,
);
// Merge overlapping alignments.
// semi = {(t, off, pos on b, len, positions on b of mismatches)}
let mut to_delete = vec![false; semi.len()];
let mut i = 0;
while i < semi.len() {
let mut j = i + 1;
while j < semi.len() {
if semi[j].0 != semi[i].0 || semi[j].1 != semi[i].1 {
break;
}
j += 1;
}
for k1 in i..j {
for k2 in k1 + 1..j {
if to_delete[k1] || to_delete[k2] {
continue;
}
let start1 = semi[k1].2;
let start2 = semi[k2].2;
let len1 = semi[k1].3;
let len2 = semi[k2].3;
let stop1 = start1 + len1;
let stop2 = start2 + len2;
let start = min(start1, start2);
let stop = max(stop1, stop2);
if stop - start <= len1 + len2 {
semi[k1].2 = start;
semi[k1].3 = stop - start;
let mut m2 = semi[k2].4.clone();
semi[k1].4.append(&mut m2);
unique_sort(&mut semi[k1].4);
to_delete[k2] = true;
}
}
}
i = j;
}
erase_if(&mut semi, &to_delete);
report_semis(
verbose,
"SEMI ALIGNMENTS AFTER MERGER",
&semi,
&b_seq,
refs,
log,
);
// If a V gene aligns starting at 0, and goes at least 60% of the way to the end, and there
// is only one alignment of the V gene, extend it to the end.
// (Only one requirement ameliorated.)
let mut i = 0;
while i < semi.len() {
let mut j = i + 1;
while j < semi.len() {
if semi[j].0 != semi[i].0 {
break;
}
j += 1;
}
let mut k = i;
let mut ok = false;
if j - i == 1 {
ok = true;
} else if j - i == 2 {
ok = true;
if semi[i].2 < semi[i + 1].2 {
k = i + 1;
}
}
if ok {
let offset = semi[k].1;
let ref_start = semi[k].1 + semi[k].2;
let tig_start = semi[k].2;
let t = semi[k].0 as usize;
if !rheaders[t].contains("segment") && refdata.is_v(t) {
let r = &refs[t];
let len = semi[k].3;
if ref_start + len < r.len() as i32
&& (ref_start + len) as f64 / r.len() as f64 >= 0.60
&& len + tig_start < b_seq.len() as i32
{
let start = ref_start + len;
let stop = min(r.len() as i32, b_seq.len() as i32 + offset);
for m in start..stop {
if b_seq[(m - offset) as usize] != r.get(m as usize) {
semi[k].4.push(m - offset);
}
}
semi[k].3 += stop - start;
}
}
}
i = j;
}
// Make sure that mismatches are unique sorted.
for i in 0..semi.len() {
unique_sort(&mut semi[i].4);
}
report_semis(
verbose,
"SEMI ALIGNMENTS AFTER SECOND EXTENSION",
&semi,
&b_seq,
refs,
log,
);
// Delete some subsumed alignments.
let mut to_delete = vec![false; semi.len()];
let mut i = 0;
while i < semi.len() {
let mut j = i + 1;
while j < semi.len() {
if semi[j].0 != semi[i].0 || semi[j].1 != semi[i].1 {
break;
}
j += 1;
}
for k1 in i..j {
for k2 in i..j {
if semi[k1].1 + semi[k1].2 + semi[k1].3 == semi[k2].1 + semi[k2].2 + semi[k2].3
&& semi[k1].3 > semi[k2].3
{
to_delete[k2] = true;
}
}
}
i = j;
}
erase_if(&mut semi, &to_delete);
report_semis(
verbose,
"SEMI ALIGNMENTS AFTER SUBSUMPTION",
&semi,
&b_seq,
refs,
log,
);
// Transform to create annx, having structure:
// { ( sequence start, match length, ref tig, ref tig start, {mismatches} ) }.
let mut annx = Vec::<(i32, i32, i32, i32, Vec<i32>)>::new();
for x in semi.iter() {
annx.push((x.2, x.3, x.0, x.2 + x.1, x.4.clone()));
}
unique_sort(&mut annx);
// Delete matches that are 'too improper'.
if !allow_improper {
let mut to_delete: Vec<bool> = vec![false; annx.len()];
for annxi in annx.iter_mut() {
std::mem::swap(&mut annxi.0, &mut annxi.2);
std::mem::swap(&mut annxi.1, &mut annxi.3);
}
annx.sort();
let mut i1 = 0;
loop {
if i1 == annx.len() {
break;
}
let j1 = next_diff1_5(&annx, i1 as i32);
let mut min_imp = 1000000000;
for k in i1..j1 as usize {
let imp = min(annx[k].1, annx[k].2);
min_imp = min(imp, min_imp);
}
const MAX_IMP: i32 = 60;
if min_imp > MAX_IMP {
for k in i1..j1 as usize {
to_delete[k] = true;
}
}
i1 = j1 as usize;
}
erase_if(&mut annx, &to_delete);
for annxi in annx.iter_mut() {
std::mem::swap(&mut annxi.0, &mut annxi.2);
std::mem::swap(&mut annxi.1, &mut annxi.3);
}
annx.sort();
}
// Log alignments.
if verbose {
fwriteln!(log, "\nINITIAL ALIGNMENTS\n");
for annxi in &annx {
print_alignx(log, annxi, refdata);
}
}
// Amongst V segments starting at zero on the V segment, if some start with
// a start codon, delete the others.
let mut have_starter = false;
for annxi in &annx {
let t = annxi.2 as usize;
if !rheaders[t].contains("segment") && refdata.is_v(t) && annxi.3 == 0 {
let p = annxi.0 as usize;
if b_seq[p] == 0 // A
&& b_seq[p+1] == 3 // T
&& b_seq[p+2] == 2
{
// G
have_starter = true;
break;
}
}
}
if have_starter {
let to_delete: Vec<bool> = annx
.iter()
.map(|annxi| {
let t = annxi.2 as usize;
if !rheaders[t].contains("segment") && refdata.is_v(t) && annxi.3 == 0 {
let p = annxi.0 as usize;
if !(b_seq[p] == 0 && b_seq[p + 1] == 3 && b_seq[p + 2] == 2) {
return true;
}
}
false
})
.collect();
erase_if(&mut annx, &to_delete);
}
// Log alignments.
if verbose {
fwriteln!(log, "\nALIGNMENTS ONE\n");
for i in 0..annx.len() {
print_alignx(log, &annx[i], refdata);
}
}
// Remove inferior matches of the edge. Two alignments are compared if the
// length of their overlap on the contig is at least 85% of one of the alignment
// lengths len1 and len2. We compute the mismatch rates r1 and r2 between the
// overlap interval and the respective references. The first alignment wins if
// at least one of the following happens:
// 1. len1 > len2 and r1 <= r2
// 2. len1 >= len2 and r2 < r2
// 3. len1 >= 1.5 * len2.
//
// Modified: multiple aligns of the same V segment are now group together in
// the calculation. And add indel penalty.
//
// ◼ For efficiency, inner loop should check to see if already deleted.
let mut to_delete: Vec<bool> = vec![false; annx.len()];
let mut ts: Vec<(usize, usize)> = annx
.iter()
.enumerate()
.map(|(i, annxi)| (annxi.2 as usize, i))
.collect(); // { ( contig index, annx index ) }
ts.sort_unstable();
let mut i1 = 0;
while i1 < ts.len() {
let j1 = next_diff1_2(&ts, i1 as i32) as usize;
let mut tlen1 = 0;
for k in i1..j1 {
tlen1 += annx[ts[k].1].1;
}
let mut i2 = 0;
while i2 < ts.len() {
let j2 = next_diff1_2(&ts, i2 as i32) as usize;
let mut tlen2 = 0;
for k in i2..j2 {
tlen2 += annx[ts[k].1].1;
}
let (mut m1, mut m2) = (0, 0);
let mut over = 0_i64;
let mut offsets1 = Vec::<i32>::new();
let mut offsets2 = Vec::<i32>::new();
for k1 in i1..j1 {
let u1 = ts[k1].1;
offsets1.push(annx[u1].0 - annx[u1].3);
}
for k2 in i2..j2 {
let u2 = ts[k2].1;
offsets2.push(annx[u2].0 - annx[u2].3);
}
offsets1.sort_unstable();
offsets2.sort_unstable();
m1 += offsets1[offsets1.len() - 1] - offsets1[0];
m2 += offsets2[offsets2.len() - 1] - offsets2[0];
for k1 in i1..j1 {
let u1 = ts[k1].1;
let l1 = annx[u1].0;
let len1 = annx[u1].1;
for k2 in i2..j2 {
let u2 = ts[k2].1;
let l2 = annx[u2].0;
let len2 = annx[u2].1;
let start = max(l1, l2);
let stop = min(l1 + len1, l2 + len2);
if start >= stop {
continue;
}
over += stop as i64;
over -= start as i64;
for x in annx[u1].4.iter() {
if *x >= start && *x < stop {
m1 += 1;
}
}
for x in annx[u2].4.iter() {
if *x >= start && *x < stop {