Skip to content

Commit b4c3cff

Browse files
authored
fix(dvae): dvae _embed permute mismatch (#403)
when use_decoder=False introduced in #383 maybe related to #400
1 parent a41ce63 commit b4c3cff

File tree

1 file changed

+47
-36
lines changed

1 file changed

+47
-36
lines changed

ChatTTS/model/dvae.py

Lines changed: 47 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,17 @@
11
import math
2-
from vector_quantize_pytorch import GroupedResidualFSQ
2+
from typing import List
33

44
import torch
55
import torch.nn as nn
66
import torch.nn.functional as F
7+
from vector_quantize_pytorch import GroupedResidualFSQ
78

89
class ConvNeXtBlock(nn.Module):
910
def __init__(
1011
self,
1112
dim: int,
1213
intermediate_dim: int,
13-
kernel, dilation,
14+
kernel: int, dilation: int,
1415
layer_scale_init_value: float = 1e-6,
1516
):
1617
# ConvNeXt Block copied from Vocos.
@@ -32,25 +33,31 @@ def __init__(
3233

3334
def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor:
3435
residual = x
35-
x = self.dwconv(x)
36-
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
37-
x = self.norm(x)
38-
x = self.pwconv1(x)
39-
x = self.act(x)
40-
x = self.pwconv2(x)
36+
37+
y = self.dwconv(x)
38+
y.transpose_(1, 2) # (B, C, T) -> (B, T, C)
39+
x = self.norm(y)
40+
del y
41+
y = self.pwconv1(x)
42+
del x
43+
x = self.act(y)
44+
del y
45+
y = self.pwconv2(x)
46+
del x
4147
if self.gamma is not None:
42-
x = self.gamma * x
43-
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
48+
y *= self.gamma
49+
y.transpose_(1, 2) # (B, T, C) -> (B, C, T)
50+
51+
x = y + residual
52+
del y
4453

45-
x = residual + x
4654
return x
47-
4855

4956

5057
class GFSQ(nn.Module):
5158

5259
def __init__(self,
53-
dim, levels, G, R, eps=1e-5, transpose = True
60+
dim: int, levels: List[int], G: int, R: int, eps=1e-5, transpose = True
5461
):
5562
super(GFSQ, self).__init__()
5663
self.quantizer = GroupedResidualFSQ(
@@ -67,19 +74,19 @@ def __init__(self,
6774

6875
def _embed(self, x: torch.Tensor):
6976
if self.transpose:
70-
x = x.transpose(1,2)
77+
x.transpose_(1, 2)
7178
"""
7279
x = rearrange(
7380
x, "b t (g r) -> g b t r", g = self.G, r = self.R,
7481
)
7582
"""
76-
x.view(-1, self.G, self.R).permute(2, 0, 1, 3)
83+
x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3)
7784
feat = self.quantizer.get_output_from_indices(x)
78-
return feat.transpose(1,2) if self.transpose else feat
85+
return feat.transpose_(1,2) if self.transpose else feat
7986

8087
def forward(self, x,):
8188
if self.transpose:
82-
x = x.transpose(1,2)
89+
x.transpose_(1,2)
8390
feat, ind = self.quantizer(x)
8491
"""
8592
ind = rearrange(
@@ -92,19 +99,20 @@ def forward(self, x,):
9299
embed_onehot = embed_onehot_tmp.to(x.dtype)
93100
del embed_onehot_tmp
94101
e_mean = torch.mean(embed_onehot, dim=[0,1])
95-
e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
102+
# e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
103+
torch.div(e_mean, (e_mean.sum(dim=1) + self.eps).unsqueeze(1), out=e_mean)
96104
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1))
97105

98106
return (
99107
torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device),
100-
feat.transpose(1,2) if self.transpose else feat,
108+
feat.transpose_(1,2) if self.transpose else feat,
101109
perplexity,
102110
None,
103-
ind.transpose(1,2) if self.transpose else ind,
111+
ind.transpose_(1,2) if self.transpose else ind,
104112
)
105-
113+
106114
class DVAEDecoder(nn.Module):
107-
def __init__(self, idim, odim,
115+
def __init__(self, idim: int, odim: int,
108116
n_layer = 12, bn_dim = 64, hidden = 256,
109117
kernel = 7, dilation = 2, up = False
110118
):
@@ -121,14 +129,16 @@ def __init__(self, idim, odim,
121129

122130
def forward(self, input, conditioning=None):
123131
# B, T, C
124-
x = input.transpose(1, 2)
125-
x = self.conv_in(x)
132+
x = input.transpose_(1, 2)
133+
y = self.conv_in(x)
134+
del x
126135
for f in self.decoder_block:
127-
x = f(x, conditioning)
128-
129-
x = self.conv_out(x)
130-
return x.transpose(1, 2)
131-
136+
y = f(y, conditioning)
137+
138+
x = self.conv_out(y)
139+
del y
140+
return x.transpose_(1, 2)
141+
132142

133143
class DVAE(nn.Module):
134144
def __init__(
@@ -144,20 +154,21 @@ def __init__(
144154
else:
145155
self.vq_layer = None
146156

147-
def forward(self, inp):
157+
def forward(self, inp: torch.Tensor) -> torch.Tensor:
148158

149159
if self.vq_layer is not None:
150160
vq_feats = self.vq_layer._embed(inp)
151161
else:
152162
vq_feats = inp.detach().clone()
153-
163+
154164
vq_feats = vq_feats.view(
155165
(vq_feats.size(0), 2, vq_feats.size(1)//2, vq_feats.size(2)),
156166
).permute(0, 2, 3, 1).flatten(2)
157167

158-
vq_feats = vq_feats.transpose(1, 2)
159-
dec_out = self.decoder(input=vq_feats)
160-
dec_out = self.out_conv(dec_out.transpose(1, 2))
161-
mel = dec_out * self.coef
168+
dec_out = self.out_conv(
169+
self.decoder(
170+
input=vq_feats.transpose_(1, 2),
171+
).transpose_(1, 2),
172+
)
162173

163-
return mel
174+
return torch.mul(dec_out, self.coef, out=dec_out)

0 commit comments

Comments
 (0)