forked from BrainJS/brain.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.js
96 lines (87 loc) · 2.99 KB
/
lstm.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
const Matrix = require('./matrix');
const RandomMatrix = require('./matrix/random-matrix');
const RNN = require('./rnn');
class LSTM extends RNN {
static getModel(hiddenSize, prevSize) {
return {
// gates parameters
// wix
inputMatrix: new RandomMatrix(hiddenSize, prevSize, 0.08), // wih
inputHidden: new RandomMatrix(hiddenSize, hiddenSize, 0.08), // bi
inputBias: new Matrix(hiddenSize, 1),
// wfx
forgetMatrix: new RandomMatrix(hiddenSize, prevSize, 0.08), // wfh
forgetHidden: new RandomMatrix(hiddenSize, hiddenSize, 0.08), // bf
forgetBias: new Matrix(hiddenSize, 1),
// wox
outputMatrix: new RandomMatrix(hiddenSize, prevSize, 0.08), // woh
outputHidden: new RandomMatrix(hiddenSize, hiddenSize, 0.08), // bo
outputBias: new Matrix(hiddenSize, 1),
// cell write params
// wcx
cellActivationMatrix: new RandomMatrix(hiddenSize, prevSize, 0.08), // wch
cellActivationHidden: new RandomMatrix(hiddenSize, hiddenSize, 0.08), // bc
cellActivationBias: new Matrix(hiddenSize, 1),
};
}
/**
*
* @param {Equation} equation
* @param {Matrix} inputMatrix
* @param {Matrix} previousResult
* @param {Object} hiddenLayer
* @returns {Matrix}
*/
static getEquation(equation, inputMatrix, previousResult, hiddenLayer) {
const sigmoid = equation.sigmoid.bind(equation);
const add = equation.add.bind(equation);
const multiply = equation.multiply.bind(equation);
const multiplyElement = equation.multiplyElement.bind(equation);
const tanh = equation.tanh.bind(equation);
const inputGate = sigmoid(
add(
add(
multiply(hiddenLayer.inputMatrix, inputMatrix),
multiply(hiddenLayer.inputHidden, previousResult)
),
hiddenLayer.inputBias
)
);
const forgetGate = sigmoid(
add(
add(
multiply(hiddenLayer.forgetMatrix, inputMatrix),
multiply(hiddenLayer.forgetHidden, previousResult)
),
hiddenLayer.forgetBias
)
);
// output gate
const outputGate = sigmoid(
add(
add(
multiply(hiddenLayer.outputMatrix, inputMatrix),
multiply(hiddenLayer.outputHidden, previousResult)
),
hiddenLayer.outputBias
)
);
// write operation on cells
const cellWrite = tanh(
add(
add(
multiply(hiddenLayer.cellActivationMatrix, inputMatrix),
multiply(hiddenLayer.cellActivationHidden, previousResult)
),
hiddenLayer.cellActivationBias
)
);
// compute new cell activation
const retainCell = multiplyElement(forgetGate, previousResult); // what do we keep from cell
const writeCell = multiplyElement(inputGate, cellWrite); // what do we write to cell
const cell = add(retainCell, writeCell); // new cell contents
// compute hidden state as gated, saturated cell activations
return multiplyElement(outputGate, tanh(cell));
}
}
module.exports = LSTM;