-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
249 lines (205 loc) · 8.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import glob
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_compression as tfc
from tqdm import tqdm
from zipdas.data import *
from zipdas.model import *
def parse_args():
"""Parses command line arguments."""
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# High-level options.
parser.add_argument("--mode", type=str, default="train", help="train")
parser.add_argument("--model_path", default="model", help="Path where to save/load the trained model.")
parser.add_argument("--lambda", type=float, default=100, dest="lmbda", help="Lambda for rate-distortion tradeoff.")
parser.add_argument("--num_filters", type=int, default=128, help="Number of filters per layer.")
parser.add_argument("--data_path", type=str, default="data", help="data path")
parser.add_argument("--result_path", type=str, default="results", help="result path")
parser.add_argument("--format", type=str, default="h5", help="data format")
parser.add_argument("--nx", type=int, default=1024, help="path size for height (spatial axis)")
parser.add_argument("--nt", type=int, default=1024, help="path size for width (temporal axis)")
parser.add_argument(
"--log_path",
default="logs",
help="Path where to log training metrics for TensorBoard and back up " "intermediate model checkpoints.",
)
parser.add_argument("--batch", type=int, default=8, help="Batch size for training and validation.")
parser.add_argument(
"--epochs",
type=int,
default=100,
help="Train up to this number of epochs. (One epoch is here defined as "
"the number of steps given by --steps_per_epoch, not iterations "
"over the full training dataset.)",
)
parser.add_argument(
"--steps_per_epoch", type=int, default=100, help="Perform validation and produce logs after this many batches."
)
parser.add_argument(
"--max_validation_steps",
type=int,
default=64,
help="Maximum number of batches to use for validation. If -1, use one "
"patch from each image in the training set.",
)
parser.add_argument(
"--precision_policy", type=str, default=None, help="Policy for `tf.keras.mixed_precision` training."
)
parser.add_argument(
"--check_numerics", action="store_true", help="Enable TF support for catching NaN and Inf in tensors."
)
args = parser.parse_args()
return args
def gen_dataset(args):
for meta in load_data(args):
data = meta["data"]
h, w = data.shape # nx, nt
patch = np.zeros((args.nx, args.nt), dtype=np.float32)
if args.mode == "train":
ih = np.random.randint(0, h - args.nx, h // args.nx * 50)
iw = np.random.randint(0, w - args.nt, w // args.nt * 50)
# ih = np.random.randint(0, h, h // args.nx * 50)
# iw = np.random.randint(0, w, w // args.nt * 50)
else:
ih = np.arange(0, h - args.nx, args.nx)
iw = np.arange(0, w - args.nt, args.nt)
for i in ih:
for j in iw:
# patch[:, :] = data[i : i + args.nx, j : j + args.nt]
# patch[: tmp.shape[0], : tmp.shape[1]] = tmp[:, :]
# patch = tf.convert_to_tensor(patch, dtype=tf.float32)
patch = tf.convert_to_tensor(data[i : i + args.nx, j : j + args.nt], dtype=tf.float32)
patch = tf.expand_dims(patch, axis=-1)
yield tf.cast(patch, tf.keras.mixed_precision.global_policy().compute_dtype)
def data_loader(args, split="train"):
with tf.device("/cpu:0"):
dataset = tf.data.Dataset.from_generator(
partial(gen_dataset, args=args), output_signature=tf.TensorSpec(shape=(None, None, 1), dtype=tf.float32)
)
if split == "train":
dataset = dataset.repeat()
if args.batch > 0:
dataset = dataset.batch(args.batch)
return dataset
def plot_data(args, filename, data_true, data_hat):
if isinstance(data_true, tf.Tensor):
data_true = data_true.numpy()
if isinstance(data_hat, tf.Tensor):
data_hat = data_hat.numpy()
plt.clf()
fig, axes = plt.subplots(
2,
1,
figsize=(6 * args.nt / args.nx, 4),
sharex=True,
sharey=False,
squeeze=False,
gridspec_kw={"wspace": 0, "hspace": 0},
)
axes[0, 0].imshow(data_true[:, :, 0], vmin=-1.5, vmax=1.5, cmap="seismic")
axes[1, 0].imshow(data_hat[:, :, 0], vmin=-1.5, vmax=1.5, cmap="seismic")
fig.subplots_adjust(wspace=None, hspace=None)
fig.savefig(filename, dpi=300, bbox_inches="tight")
def test(args):
if not os.path.exists(args.result_path):
os.makedirs(args.result_path)
if not os.path.exists(args.result_path + "/figures"):
os.makedirs(args.result_path + "/figures")
try:
model = tf.keras.models.load_model(args.model_path)
print(f"Loaded model: {args.model_path}")
except:
model = BLS2017Model(args.lmbda, args.num_filters)
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
status = checkpoint.restore(tf.train.latest_checkpoint(args.model_path))
print(f"Restored checkpoint: {args.model_path}: {status}")
print("Using model:", model)
test_dataset = data_loader(args, "test")
for i, x in enumerate(test_dataset):
tensors = model.compress(x)
# # Write a binary file with the shape information and the compressed string.
packed = tfc.PackedTensors()
packed.pack(tensors)
# with open(args.output_file, "wb") as f:
# f.write(packed.string)
x_hat = model.decompress(*tensors)
plot_data(args, args.result_path + f"/figures/{i:04d}.png", x, x_hat)
# Cast to float in order to compute metrics.
x = tf.cast(x, tf.float32)
x_hat = tf.cast(x_hat, tf.float32)
mse = tf.reduce_mean(tf.math.squared_difference(x, x_hat))
psnr = tf.squeeze(tf.image.psnr(x, x_hat, 3))
msssim = tf.squeeze(tf.image.ssim_multiscale(x, x_hat, 3))
msssim_db = -10.0 * tf.math.log(1 - msssim) / tf.math.log(10.0)
# The actual bits per pixel including entropy coding overhead.
num_pixels = tf.reduce_prod(tf.shape(x)[:-1])
bpp = len(packed.string) * 8 / num_pixels
print("----------------------------------------")
print(f"Mean squared error: {mse:0.4f}")
print(f"Bits per pixel: {bpp:0.4f}")
print(f"PSNR (dB): {psnr:0.2f}")
print(f"Multiscale SSIM: {msssim:0.4f}")
print(f"Multiscale SSIM (dB): {msssim_db:0.2f}")
def train(args):
"""Instantiates and trains the model."""
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
if not os.path.exists(args.model_path + "/checkpoint"):
os.makedirs(args.model_path + "/checkpoint")
if args.precision_policy:
tf.keras.mixed_precision.set_global_policy(args.precision_policy)
if args.check_numerics:
tf.debugging.enable_check_numerics()
model = BLS2017Model(args.lmbda, args.num_filters)
initial_learning_rate = 1e-3
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=args.steps_per_epoch,
decay_rate=0.9,
staircase=False)
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule),
)
train_dataset = data_loader(args, "train")
validation_dataset = data_loader(args, "validation")
validation_dataset = validation_dataset.take(args.max_validation_steps)
class CustomCallback(tf.keras.callbacks.Callback):
pass
model.fit(
train_dataset.prefetch(8),
epochs=args.epochs,
steps_per_epoch=args.steps_per_epoch,
validation_data=validation_dataset.cache(),
validation_freq=1,
callbacks=[
# CustomCallback(),
tf.keras.callbacks.TerminateOnNaN(),
tf.keras.callbacks.TensorBoard(log_dir=args.log_path, histogram_freq=1, update_freq="epoch"),
tf.keras.callbacks.BackupAndRestore(args.log_path),
tf.keras.callbacks.ModelCheckpoint(
args.model_path + "/checkpoint/variables",
monitor="val_mse",
save_best_only=False,
save_weights_only=True,
verbose=1,
),
],
verbose=1,
)
print(f"Training complete. Saving model to {args.model_path}.")
model.save(args.model_path)
def main(args):
print(f"args: {args}")
if args.mode == "train":
train(args)
elif args.mode == "test":
test(args)
else:
raise ValueError(f"Unknown command {args.command}.")
if __name__ == "__main__":
args = parse_args()
main(args)