Skip to content

AIMedLab/ADE-prediction-using-Drug-Similarities

 
 

Repository files navigation

Using Multiple Drug Similarity Networks to Promote Adverse Drug Event Detection

Instruction

  • Download the Signal Scores and Drug Similarity Matrices from here.
  • Copy the downloaed Signal_Scores and Similarity_Matrices directory into the cloned repository.

Running example

python run.py --input Signal_Scores/FAERS_signal_data_BCPNN --method BCPNN --year 22 --quarter 2 --eval_metrics all --similarity go_mf --output output/results_BCPNN/go_mf/results_22Q2.csv --soc_output output/soc_results_BCPNN/go_mf/soc_results_22Q2.csv --split True

Parameters

  • --input, input original signal scores files.
  • --method, signal detection algorithm (i.e., MGPS, BCPNN).
  • --year, year of the signal data file in 'YY' format.
  • --quarter, quarter of signal data file (i.e., 1, 2, 3, 4).
  • --eval_metrics, evaluation metrics (i.e., AUC, AUPR, Precision, Recall, etc.) choices=['all', 'specificity-sensitivity'].
  • --similarity, which drug similarity to use choices=['chem', 'atc', 'sw', 'go_bp', 'go_cc', 'go_mf'].
  • --output, output file path for the result.
  • --soc_output, output file path for the result of MedDRA SOC.
  • --split, whether to split entire dataset into validation set and testing set (i.e., True/False).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.7%
  • Shell 1.3%