-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTTSPrepPW.py
executable file
·109 lines (63 loc) · 2.36 KB
/
TTSPrepPW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import Converter
import HallucinationRemover
import Punctuator
import SpeechRecognizerWXDiarizer
import SentenceSplitterWX
import AlignerWX
import AudioClipper
import Converter
import whisperx
device = "cuda"
compute_type = "float16" # change to "int8" if low on GPU mem (may reduce accuracy)
#rename long youtube files
#list files in directory
filelist = os.listdir('./PreProcessedAudio/')
model = whisperx.load_model("large-v2", device, compute_type=compute_type, language='en', asr_options={"suppress_numerals": True})
for entry in filelist:
SpeechRecognizerWXDiarizer.SpeechRecognizer(entry, model)
#AudioClipper
filelist = os.listdir('./RawTranscripts/')
traininglist = []
validationlist = []
for entry in filelist:
metadata = AudioClipper.AudioClipper(entry)
traininglist.extend(metadata[0])
validationlist.extend(metadata[1])
with open("train.txt", 'w') as f:
for entry in traininglist:
f.write(f"{entry}\n")
print(f"{entry}\n")
print("row")
with open("validation.txt", 'w') as f:
for entry in validationlist:
f.write(f"{entry}\n")
print(f"{entry}\n")
print("row")
# MetaDataGenerator
#Converter
filelist = os.listdir('./SplitAudio/')
for entry in filelist:
Converter.Converter(entry)
import HallucinationRemover
#traintranscript = pd.read_csv('train.txt', sep="|", header=None)
# Using readlines()
traintranscript = open('train.txt', 'r')
traintranscript = traintranscript.readlines()
HallucinationRemover.HallucinationRemover(traintranscript, "train")
#validationtranscript = pd.read_csv('validation.txt', sep="|", header=None)
# Using readlines()
validationtranscript = open('validation.txt', 'r')
validationtranscript = validationtranscript.readlines()
HallucinationRemover.HallucinationRemover(validationtranscript, "validation")
import QualityControlWX
#traintranscript = pd.read_csv('train.txt', sep="|", header=None)
# Using readlines()
traintranscript = open('train_cleaned.txt', 'r')
traintranscript = traintranscript.readlines()
QualityControlWX.QualityControl(traintranscript, "train")
#validationtranscript = pd.read_csv('validation.txt', sep="|", header=None)
# Using readlines()
validationtranscript = open('validation_cleaned.txt', 'r')
validationtranscript = validationtranscript.readlines()
QualityControlWX.QualityControl(validationtranscript, "validation")