Skip to content

Latest commit

 

History

History
112 lines (78 loc) · 3.08 KB

README.md

File metadata and controls

112 lines (78 loc) · 3.08 KB

🚀 Crypto Price Predictor 📈

Welcome to the Crypto Price Predictor repository! This project aims to forecast cryptocurrency prices using machine learning models. 🌟

Bitcoin Prediction

📂 Project Structure

  • Dataset/ 📊: Contains the historical cryptocurrency data in CSV format.
  • Models/ 🧠: Stores the trained machine learning models.
  • Crypto_Price_Model.py 🤖: Script to train the models.
  • Crypto_Price_Predictor.py 🔮: Script to predict future prices using the trained models.

🛠️ How to Use

1. Train the Model

First, run Crypto_Price_Model.py to train the models for all the cryptocurrencies. The trained models will be saved in the Models directory.

python Crypto_Price_Model.py

2. Predict Future Prices

Next, use Crypto_Price_Predictor.py to load a trained model and predict future prices for a specified cryptocurrency.

python Crypto_Price_Predictor.py

Enter the name of the cryptocurrency (e.g., Bitcoin, Ethereum) when prompted.

🏆 Model Performance

Here are the Mean Squared Error (MSE) values for our models:

  • Aave: 2053.1783
  • BinanceCoin: 64902.0719
  • Bitcoin: 298114964.3461
  • Cardano: 0.1006
  • ChainLink: 121.0245
  • Cosmos: 110.5456
  • CryptocomCoin: 0.0006
  • Dogecoin: 0.0188
  • EOS: 0.3773
  • Ethereum: 487633.3648
  • Iota: 0.0150
  • Litecoin: 189.7667
  • Monero: 237.8501
  • NEM: 0.0008
  • Polkadot: 13.2997
  • Solana: 152.0202
  • Stellar: 0.0020
  • Tether: 7.7837e-06
  • Tron: 7.6098e-05
  • Uniswap: 18.8259
  • USDCoin: 8.8966e-06
  • WrappedBitcoin: 40597001.4039
  • XRP: 0.0072

🌟 Features

  • Predicts future prices of various cryptocurrencies.
  • Utilizes Random Forest Regressor for accurate predictions.
  • Handles missing data and performs necessary preprocessing.

📦 Dependencies

Ensure you have the required libraries installed. You can install them using pip:

pip install pandas numpy scikit-learn joblib matplotlib

📫 Connect with Me

For any queries or discussions, feel free to reach out via my GitHub profile.


Happy predicting! 🚀📈



### Instructions for Running the Scripts

1. **Train the Model:**
   - Run `Crypto_Price_Model.py` to train the models for all the cryptocurrencies and save them to the "Models" directory.

   ```bash
   python Crypto_Price_Model.py
  1. Predict Future Prices:

    • Run Crypto_Price_Predictor.py to load a trained model from the "Models" directory and predict future prices for a specified cryptocurrency.
    python Crypto_Price_Predictor.py
    • Enter the name of the cryptocurrency (e.g., Bitcoin, Ethereum) when prompted.

Dependencies

Make sure you have the required libraries installed. You can install them using pip:

pip install pandas numpy scikit-learn joblib matplotlib

These updated scripts will now save the trained models in the "Models" directory and load them from there for prediction.