-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsparsify.py
181 lines (138 loc) · 6.36 KB
/
sparsify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from datasets import load_dataset
import torch
from expertize import ExpertizedLinear
from math import isnan, floor
import gc
from random import shuffle
import itertools as it
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cudnn.enabled = True
torch.backends.cudnn.allow_tf32 = False
model_id = "Meta-Llama-3-8B/"
out_dir = "Meta-Llama-3-8B-MoE/model.pt"
def batched(in_seq, bsz, return_last=True):
buffer = []
for item in in_seq:
buffer.append(item)
if len(buffer) == bsz:
yield buffer
buffer = []
if return_last and len(buffer) > 0:
yield buffer
buffer = []
return
def set_no_train_mode(module):
if isinstance(module, ExpertizedLinear):
module.jitter_noise = 0
set_req_grad_recursive(module.router_proj, False)
set_req_grad_recursive(module.experts, False)
def set_router_train_mode(module):
if isinstance(module, ExpertizedLinear):
module.jitter_noise = 0
set_req_grad_recursive(module.router_proj, True)
set_req_grad_recursive(module.experts, False)
def set_expert_train_mode(module):
if isinstance(module, ExpertizedLinear):
module.jitter_noise = 0
set_req_grad_recursive(module.router_proj, False)
set_req_grad_recursive(module.experts, True)
def set_dual_train_mode(module):
if isinstance(module, ExpertizedLinear):
module.jitter_noise = 0
set_req_grad_recursive(module, True)
#set requires_grad for all of the parameters of the given module.
def set_req_grad_recursive(module, requires_grad):
for param in module.parameters():
param.requires_grad = requires_grad
#replace a (presumably nn.Linear) module with an ExpertizedLinear module.
def replace_module(module, target_names, new_module_kwargs={}):
for child_name, child_module in module.named_children():
if any([x in child_name for x in target_names]):
module.__setattr__(child_name, ExpertizedLinear.from_linear(child_module, **new_module_kwargs))
torch.cuda.empty_cache()
gc.collect()
else:
replace_module(child_module, target_names, new_module_kwargs)
#set number of active experts
def set_n_experts(model, n_experts):
for module in model.modules():
if isinstance(module, ExpertizedLinear):
module.top_k = n_experts
#get some samples from the dataset
def fetch_some_samples(dataset, dataset_fraction, tokenizer, max_tokens, seed=42):
ds_shard = dataset.train_test_split(dataset_fraction, shuffle=True, seed=seed)['test'].map(tokenizer, input_columns='text')
train_samples = []
for row in ds_shard:
num_steps = min([max_tokens, len(row['input_ids'])])
steps = list(range(2, num_steps))
train_samples.extend([torch.Tensor([row['input_ids'][:step]]).to(torch.long).cuda() for step in steps])
shuffle(train_samples)
return train_samples
def train_on_sample():
router_optim.zero_grad()
expert_optim.zero_grad()
minibatch_size = len(input_batch)
minibatch_losses = []
for input_sample in input_batch:
out = model(
input_ids=input_sample,
labels=input_sample,
)
loss = out.loss / minibatch_size
minibatch_losses.append(loss)
loss.backward()
print(f"Minibatch loss: {sum(minibatch_losses).item()}")
return sum(minibatch_losses)
def train_dual(lr, weight_decay, dataset, max_dataset_fraction, max_tokens, loss_cutoff=0.2, seed=42):
global input_batch, router_optim, expert_optim
train_samples = fetch_some_samples(dataset=dataset, dataset_fraction=max_dataset_fraction, tokenizer=tok, max_tokens=max_tokens, seed=seed)
router_optim = torch.optim.LBFGS([param for name, param in model.named_parameters() if param.requires_grad and "router_proj" in name], lr=0.1)
expert_optim = torch.optim.NAdam([param for name, param in model.named_parameters() if param.requires_grad and "experts" in name], lr=lr)
GRAD_ACC_STEPS = 64
router_scheduler = torch.optim.lr_scheduler.LinearLR(router_optim, start_factor=1, end_factor=0.1, total_iters=4)
expert_scheduler = torch.optim.lr_scheduler.LinearLR(expert_optim, start_factor=1, end_factor=0.000000001, total_iters=floor(len(train_samples)/GRAD_ACC_STEPS))
for minibatch in batched(train_samples, GRAD_ACC_STEPS):
input_batch = minibatch
router_optim.step(train_on_sample)
router_scheduler.step()
print('Trained router.')
loss = train_on_sample()
expert_optim.step()
expert_optim.zero_grad()
loss = train_on_sample()
expert_optim.step()
expert_optim.zero_grad()
expert_scheduler.step()
print('Trained experts.')
if loss < loss_cutoff:
break
if __name__ == "__main__":
MODEL_DIR = "Meta-Llama-3-8B/"
OUT_DIR = "Meta-Llama-3-8B-MoE/model.pt"
MODULES_TO_MOE=[
'gate_proj',
'up_proj',
'down_proj',
]
NUM_EXPERTS=16
ACTIVE_EXPERTS=4
global model, tok
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, torch_dtype=torch.bfloat16, device_map='cuda:0', attn_implementation='flash_attention_2')
set_req_grad_recursive(model, False)
tok = AutoTokenizer.from_pretrained(MODEL_DIR)
dataset = load_dataset('allenai/c4', 'en.noblocklist', data_files='en.noblocklist/c4-train.00000-of-01024.json.gz', ignore_verifications=True)['train'].select_columns(['text'])
for i, layer in enumerate(model.model.layers):
if i < 8:
continue
replace_module(layer, MODULES_TO_MOE, {'num_experts': NUM_EXPERTS, 'active_experts': ACTIVE_EXPERTS, 'rank_reduction_factor': 1, 'router_bias': False})
print(f"Training layer {i}")
layer.apply(set_dual_train_mode)
train_dual(lr=0.001, weight_decay=5e-3, dataset=dataset, max_dataset_fraction=0.001, max_tokens=128, seed=i) #0.001 generally works well
layer.apply(set_no_train_mode)
pipe = pipeline("text-generation", model=model, tokenizer=tok)
eval_text = pipe("Question: Why is the sky blue? \nAnswer: ", max_new_tokens=256)
print(eval_text)
torch.save(model, out_dir)