forked from WillKoehrsen/pytorch_challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaug.py
300 lines (230 loc) · 9.36 KB
/
aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from torchvision import transforms, datasets
import torch
from torch import optim
from torch.utils.data import DataLoader
from torchvision import models
import torch.nn as nn
import numpy as np
import os
import json
from torchsummary import summary
from timeit import default_timer as timer
train_on_gpu = torch.cuda.is_available()
print(f'Training on gpu: {train_on_gpu}')
data_dir = 'flower_data'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
train_n = 0
valid_n = 0
train_n = 0
valid_n = 0
for d in os.listdir(train_dir):
train_n += len(os.listdir(train_dir + f'/{d}'))
for d in os.listdir(valid_dir):
valid_n += len(os.listdir(valid_dir + f'/{d}'))
print(f'Training images: {train_n} Validation images: {valid_n}')
image_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
transforms.ToPILImage(),
transforms.TenCrop(size=224),
transforms.Lambda(lambda crops: torch.stack(
[transforms.ToTensor()(crop) for crop in crops]))
]),
'val': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
batch_size = 32
# Datasets
data = {'train': datasets.ImageFolder(root=train_dir,
transform=image_transforms['train']),
'val': datasets.ImageFolder(root=valid_dir,
transform=image_transforms['val'])
}
dataloaders = {'train': DataLoader(data['train'], batch_size=batch_size),
'val': DataLoader(data['val'], batch_size=batch_size)
}
trainiter = iter(dataloaders['train'])
print(f'Training shape :{next(trainiter)[0].shape}')
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
name_to_cat = {name: cat for cat, name in cat_to_name.items()}
class_to_idx = data['train'].class_to_idx
idx_to_name = {idx: cat_to_name[category]
for category, idx in data['train'].class_to_idx.items()}
model = models.vgg16(pretrained=True)
model.classifier[6]
for param in model.parameters():
param.requires_grad = False
n_inputs = model.classifier[6].in_features
n_classes = len(dataloaders['train'].dataset.classes)
model.classifier[6] = nn.Sequential(
nn.Linear(n_inputs, 1024),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(1024, n_classes)
)
if train_on_gpu:
model = model.to('cuda')
def load_checkpoint(filepath, model):
# Make sure to set parameters as not trainable
for param in model.parameters():
param.requires_grad = False
# Load in checkpoint
checkpoint = torch.load(filepath)
# Extract classifier
model.classifier = checkpoint['classifier']
model.cat_to_name = checkpoint['cat_to_name']
model.class_to_idx = checkpoint['class_to_idx']
model.idx_to_name = checkpoint['idx_to_name']
model.epochs = checkpoint['epochs']
# Load in the state dict
model.load_state_dict(checkpoint['state_dict'])
if train_on_gpu:
model = model.to('cuda')
optimizer = optim.Adam(model.parameters())
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
total_params = sum(p.numel() for p in model.parameters())
print(f'{total_params:,} total parameters.')
total_trainable_params = sum(p.numel()
for p in model.parameters() if p.requires_grad)
print(f'{total_trainable_params:,} total gradient parameters.')
print(f'Model has been trained for {model.epochs} epochs.')
return model, optimizer
# odel, optimizer = load_checkpoint(
# 'vgg16.pth', model)
summary(model, input_size=(3, 224, 224), batch_size=batch_size)
print(f'Model classifier: {model.classifier}')
for param in model.parameters():
if param.requires_grad:
print(param.shape)
def train(model, criterion, train_loader, valid_loader, save_file_name,
max_epochs_stop=3, n_epochs=20):
optimizer = optim.Adam(model.parameters())
model.optimizer = optimizer
# Early stopping details
epochs_no_improve = 0
valid_loss_min = np.Inf
# Number of epochs already trained
try:
print(f'Current training epochs: {model.epochs}.')
except Exception as e:
model.epochs = 0
print(f'Starting Training from Scratch.')
overall_start = timer()
# Iterate through epochs
for epoch in range(n_epochs):
# keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0
train_acc = 0
valid_acc = 0
model.train()
start = timer()
# Training loop
for ii, (data, target) in enumerate(train_loader):
bs, crops, c, h, w = data.size()
# Tensors on gpu
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# Clear gradients
optimizer.zero_grad()
# Predicted outputs
# outputs are not probabilities
output = model(data.view(-1, c, h, w))
output = output.view(bs, crops, -1).mean(1)
# Loss and backpropagation
loss = criterion(output, target)
loss.backward()
# Update the parameters
optimizer.step()
# Track train loss
train_loss += loss.item()
# Calculate accuracy by finding max probability
_, pred = torch.max(output, dim=1)
correct_tensor = pred.eq(target.data.view_as(pred))
accuracy = torch.mean(correct_tensor.type(torch.FloatTensor))
train_acc += accuracy.item()
# Track training
print(
f'Epoch: {epoch}\t{100 * ii / len(train_loader):.2f}% complete. {timer() - start:.2f} seconds elapsed.', end='\r')
# After training loops ends
else:
model.epochs += 1
model.eval()
# Don't need to keep track of gradients
with torch.no_grad():
# Validation loop
for data, target in valid_loader:
# Tensors to gpu
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# Forward pass
output = model(data)
# Validation loss
loss = criterion(output, target)
valid_loss += loss.item()
# Calculate validation accuracy
_, pred = torch.max(output, dim=1)
correct_tensor = pred.eq(target.data.view_as(pred))
accuracy = torch.mean(
correct_tensor.type(torch.FloatTensor))
valid_acc += accuracy.item()
# Calculate average losses
train_loss = train_loss / len(train_loader)
valid_loss = valid_loss / len(valid_loader)
# Calculate average accuracy
train_acc = train_acc / len(train_loader)
valid_acc = valid_acc / len(valid_loader)
# Print training and validation results
print('\nEpoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss))
print(
f'Training Accuracy: {100 * train_acc:.2f}%\t Validation Accuracy: {100 * valid_acc:.2f}%')
# Save the model if validation loss decreases
if valid_loss < valid_loss_min - 0.01:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
# Save model
torch.save(model.state_dict(), save_file_name)
epochs_no_improve = 0
valid_loss_min = valid_loss
# Otherwise increment count of epochs with no improvement
else:
epochs_no_improve += 1
print(f'{epochs_no_improve} epochs with no improvement.')
if epochs_no_improve >= max_epochs_stop:
print('Early Stopping')
total_time = timer() - overall_start
print(
f'{total_time:.2f} total seconds elapsed. {total_time / (epoch+1):.2f} seconds per epoch.')
break
criterion = nn.CrossEntropyLoss()
train(model, criterion,
dataloaders['train'], dataloaders['val'], max_epochs_stop=10,
save_file_name='aug-scratch.pt', n_epochs=50)
def save_checkpoint(model, path, save_cpu=False):
if save_cpu:
model = model.to('cpu')
path = path.split('.')[0] + '-cpu.pth'
checkpoint = {
'cat_to_name': cat_to_name,
'class_to_idx': data['train'].class_to_idx,
'idx_to_name': idx_to_name,
'epochs': model.epochs,
'classifier': model.classifier,
'state_dict': model.state_dict(),
'optimizer_state_dict': model.optimizer.state_dict()
}
torch.save(checkpoint, path)
save_checkpoint(model, 'vgg16-aug-scratch.pth')
model, optimizer = load_checkpoint(
'vgg16-aug-scratch.pth', models.vgg16(pretrained=True))
print(model)