forked from WillKoehrsen/pytorch_challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_first_try.py
381 lines (251 loc) · 10.4 KB
/
script_first_try.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from torchvision import transforms, datasets
import torch
from torch import optim
from torch.utils.data import DataLoader
from torchvision import models
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
train_on_gpu = torch.cuda.is_available()
train_on_gpu
data_dir = 'flower_data'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
# In[3]:
train_n = 0
valid_n = 0
for d in os.listdir(train_dir):
train_n += len(os.listdir(train_dir + f'/{d}'))
for d in os.listdir(valid_dir):
valid_n += len(os.listdir(valid_dir + f'/{d}'))
train_n, valid_n
# In[4]:
# TODO: Define your transforms for the training and validation sets
image_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(size=224, scale=(0.8, 1.0)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
# In[5]:
batch_size = 256
# Datasets
data = {'train': datasets.ImageFolder(root=train_dir,
transform=image_transforms['train']),
'val': datasets.ImageFolder(root=valid_dir,
transform=image_transforms['val'])
}
dataloaders = {'train': DataLoader(data['train'], batch_size=batch_size),
'val': DataLoader(data['val'], batch_size=batch_size)
}
# In[6]:
len(dataloaders['train'].dataset.samples)
# In[7]:
len(dataloaders['train'].dataset.classes)
# In[8]:
trainiter = iter(dataloaders['train'])
next(trainiter)[0].shape
import json
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
name_to_cat = {name: cat for cat, name in cat_to_name.items()}
cat_to_name.keys()
# In[58]:
idx_to_name = {idx: cat_to_name[category] for category, idx in data['train'].class_to_idx.items()}
idx_to_name[10]
# In[10]:
for loader in dataloaders:
class_to_idx = dataloaders[loader].dataset.class_to_idx
new_mapping = {cat_to_name.get(category): index for category,
index in class_to_idx.items()}
dataloaders[loader].dataset.class_to_idx = new_mapping
new_mapping['blanket flower']
model = models.vgg16(pretrained=True)
model.classifier[6]
# Freeze training for all layers
for param in model.parameters():
param.requires_grad = False
n_inputs = model.classifier[6].in_features
n_classes = len(dataloaders['train'].dataset.classes)
# Classifier module
class Sequential(nn.Module):
def __init__(self, n_inputs, n_classes, drop_prob=0.2):
super(Sequential, self).__init__()
# Fully connected layer
self.fc1 = nn.Linear(n_inputs, int(n_inputs / 4))
self.fc2 = nn.Linear(int(n_inputs / 4), int(n_inputs / 8))
self.fc3 = nn.Linear(int(n_inputs / 8), n_classes)
# Dropout
self.dropout = nn.Dropout(p=drop_prob)
# Output layer
self.out = nn.LogSoftmax(dim = 1)
def forward(self, x):
# add sequence of convolutional and max pooling layers
x = self.dropout(F.relu(self.fc1(x)))
x = self.dropout(F.relu(self.fc2(x)))
x = self.dropout(F.relu(self.fc3(x)))
x = self.out(x)
return x
classifier = Sequential(n_inputs, n_classes)
model.classifier[6] = nn.Linear(n_inputs, n_classes)
# In[47]:
model.classifier
# In[48]:
# TODO: Build and train your network
if train_on_gpu:
model = model.to('cuda')
from torchsummary import summary
summary(model, input_size = (3, 224, 224), batch_size = 1024)
for param in model.parameters():
if param.requires_grad:
print(param.shape)
# In[50]:
pytorch_total_params = sum(p.numel() for p in model.parameters())
pytorch_total_params
# In[51]:
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
pytorch_total_params
# In[52]:
optimizer = optim.Adam(model.parameters())
n_epochs = 20
max_epochs_stop = 3
save_file_name = 'first_try.pt'
def train(model, train_loader, valid_loader, save_file_name,
max_epochs_stop=5,
n_epochs=30):
# Early stopping details
epochs_no_improve = 0
valid_loss_min = np.Inf
# specify loss function
criterion = nn.CrossEntropyLoss()
# specify optimizer
optimizer = optim.Adam(model.parameters())
try:
print(f'Current training epochs:{model.epochs}.')
except:
model.epochs = 0
print(f'Starting Training from Scratch.')
for epoch in range(n_epochs):
# keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0
train_acc = 0
valid_acc = 0
###################
# train the model #
###################
model.train()
for ii, (data, target) in enumerate(train_loader):
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
train_loss += loss.item()
# Calculate accuracy
_, pred = torch.max(output, dim = 1)
correct_tensor = pred.eq(target.data.view_as(pred))
accuracy = torch.mean(correct_tensor.type(torch.FloatTensor))
train_acc += accuracy.item()
print(
f'Epoch: {epoch} \t {100 * ii / len(train_loader):.2f}% complete.', end='\r')
else:
model.epochs += 1
with torch.no_grad():
model.eval()
# Validation loop
for data, target in valid_loader:
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update average validation loss
valid_loss += loss.item()
# Calculate accuracy
_, pred = torch.max(output, dim = 1)
correct_tensor = pred.eq(target.data.view_as(pred))
accuracy = torch.mean(correct_tensor.type(torch.FloatTensor))
valid_acc += accuracy.item()
# calculate average losses
train_loss = train_loss/len(train_loader)
valid_loss = valid_loss/len(valid_loader)
train_acc = train_acc/len(train_loader)
valid_acc = valid_acc/len(valid_loader)
# print training/validation statistics
print('\nEpoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss))
print(
f'Training Accuracy: {100 * train_acc:.2f}%\t Validation Accuracy: {100 * valid_acc:.2f}%')
# save model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict(), save_file_name)
epochs_no_improve = 0
valid_loss_min = valid_loss
else:
epochs_no_improve += 1
print(f'{epochs_no_improve} epochs with no improvement.')
if epochs_no_improve >= max_epochs_stop:
print('Early Stopping')
break
# In[62]:
train(model, dataloaders['train'], dataloaders['val'], max_epochs_stop=10,
save_file_name=save_file_name, n_epochs = 90)
def save_checkpoint(model, optimizer, path):
checkpoint = {
'class_to_idx': data['train'].class_to_idx,
'idx_to_name': idx_to_name,
'epochs': model.epochs,
'classifier': model.classifier,
'state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}
torch.save(checkpoint, path)
save_checkpoint(model, optimizer, 'vgg16.pth')
# TODO: Write a function that loads a checkpoint and rebuilds the model
def load_checkpoint(filepath, model):
# Make sure to set parameters as not trainable
for param in model.parameters():
param.requires_grad = False
# Load in checkpoint
checkpoint = torch.load(filepath)
# Extract classifier
model.classifier = checkpoint['classifier']
model.class_to_idx = checkpoint['class_to_idx']
model.idx_to_name = checkpoint['idx_to_name']
model.epochs = checkpoint['epochs']
# Load in the state dict
model.load_state_dict(checkpoint['state_dict'])
if train_on_gpu:
model = model.to('cuda')
optimizer = optim.Adam(model.parameters())
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
total_params = sum(p.numel() for p in model.parameters())
print(f'{total_params:,} total parameters.')
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'{total_trainable_params:,} total gradient parameters.')
return model, optimizer
model, optimizer = load_checkpoint('vgg16.pth', models.vgg16(pretrained=True))
print(model)