Skip to content

Commit b8a0a23

Browse files
committed
docs(updated-command-output-to-be-up-to-date): updated command output to be up to date
1 parent 4f9c0b8 commit b8a0a23

5 files changed

+160
-160
lines changed

_episodes/04-Building-An-Example-Query.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ galah.atlas_counts(
7979
```
8080
```output
8181
totalRecords
82-
0 88184
82+
0 86105
8383
```
8484

8585
### Filter our data by year
@@ -137,7 +137,7 @@ galah.atlas_counts(
137137
```
138138
```output
139139
totalRecords
140-
0 62273
140+
0 61490
141141
```
142142

143143
As this is less than the 88184 records that were shown above, we can see we have already filtered the data.
@@ -199,7 +199,7 @@ galah.atlas_counts(
199199
```
200200
```output
201201
totalRecords
202-
0 47743
202+
0 47714
203203
```
204204

205205
### Adding other filters: Data Resources

_episodes/05-Group-By-Example.md

+38-38
Original file line numberDiff line numberDiff line change
@@ -32,10 +32,10 @@ galah.atlas_counts(
3232
```output
3333
dataResourceName count
3434
0 FrogID 39840
35-
1 NSW BioNet Atlas 4882
36-
2 iNaturalist Australia 2578
37-
3 NatureMapr 249
38-
4 Earth Guardians Weekly Feed 151
35+
1 NSW BioNet Atlas 4884
36+
2 iNaturalist Australia 2664
37+
3 Earth Guardians Weekly Feed 150
38+
4 NatureMapr 133
3939
5 ALA species sightings and OzAtlas 16
4040
6 Victorian Biodiversity Atlas 10
4141
7 FrogWatch SA 6
@@ -45,7 +45,7 @@ galah.atlas_counts(
4545
11 SA Fauna 2
4646
```
4747

48-
We can see that there are 12 data resources that have provided the ALA observations of *Litoria peronii*, and surprisingly, FrogID provides the second most observations!
48+
We can see that there are 12 data resources that have provided the ALA observations of *Litoria peronii*.
4949

5050
Now, in the query above, we specified that we want records since 2018. However, we can also see how many records came from each year by adding `year` to the `group_by` arguments.
5151

@@ -61,25 +61,25 @@ galah.atlas_counts(
6161
```output
6262
dataResourceName year count
6363
0 FrogID - 39840
64-
1 NSW BioNet Atlas - 4882
65-
2 iNaturalist Australia - 2578
66-
3 NatureMapr - 249
67-
4 Earth Guardians Weekly Feed - 151
64+
1 NSW BioNet Atlas - 4884
65+
2 iNaturalist Australia - 2664
66+
3 Earth Guardians Weekly Feed - 150
67+
4 NatureMapr - 133
6868
5 ALA species sightings and OzAtlas - 16
6969
6 Victorian Biodiversity Atlas - 10
7070
7 FrogWatch SA - 6
7171
8 Australian Museum provider for OZCAM - 4
7272
9 BowerBird - 3
7373
10 Melbourne Water Frog Census - 2
7474
11 SA Fauna - 2
75-
12 - 2018 5200
76-
13 - 2019 5469
77-
14 - 2020 13358
78-
15 - 2021 14469
79-
16 - 2022 7506
80-
17 - 2023 817
81-
18 - 2024 762
82-
19 - 2025 162
75+
12 - 2018 5181
76+
13 - 2019 5447
77+
14 - 2020 13334
78+
15 - 2021 14458
79+
16 - 2022 7496
80+
17 - 2023 800
81+
18 - 2024 753
82+
19 - 2025 245
8383
```
8484

8585
Now, we not only have the data resources providing observations of *Litoria peronii*, we can also see how many observations there were per year.
@@ -111,30 +111,30 @@ galah.atlas_counts(
111111
8 NSW BioNet Atlas 2021 1244
112112
9 NSW BioNet Atlas 2022 840
113113
10 NSW BioNet Atlas 2023 205
114-
11 NSW BioNet Atlas 2024 63
114+
11 NSW BioNet Atlas 2024 65
115115
12 iNaturalist Australia 2018 108
116116
13 iNaturalist Australia 2019 113
117-
14 iNaturalist Australia 2020 227
117+
14 iNaturalist Australia 2020 228
118118
15 iNaturalist Australia 2021 321
119-
16 iNaturalist Australia 2022 409
120-
17 iNaturalist Australia 2023 576
121-
18 iNaturalist Australia 2024 665
122-
19 iNaturalist Australia 2025 159
123-
20 NatureMapr 2018 37
124-
21 NatureMapr 2019 48
125-
22 NatureMapr 2020 47
126-
23 NatureMapr 2021 24
127-
24 NatureMapr 2022 27
128-
25 NatureMapr 2023 33
129-
26 NatureMapr 2024 30
130-
27 NatureMapr 2025 3
131-
28 Earth Guardians Weekly Feed 2018 30
132-
29 Earth Guardians Weekly Feed 2019 43
133-
30 Earth Guardians Weekly Feed 2020 24
134-
31 Earth Guardians Weekly Feed 2021 27
135-
32 Earth Guardians Weekly Feed 2022 22
136-
33 Earth Guardians Weekly Feed 2023 1
137-
34 Earth Guardians Weekly Feed 2024 4
119+
16 iNaturalist Australia 2022 410
120+
17 iNaturalist Australia 2023 577
121+
18 iNaturalist Australia 2024 666
122+
19 iNaturalist Australia 2025 241
123+
20 Earth Guardians Weekly Feed 2018 30
124+
21 Earth Guardians Weekly Feed 2019 43
125+
22 Earth Guardians Weekly Feed 2020 22
126+
23 Earth Guardians Weekly Feed 2021 26
127+
24 Earth Guardians Weekly Feed 2022 22
128+
25 Earth Guardians Weekly Feed 2023 1
129+
26 Earth Guardians Weekly Feed 2024 6
130+
27 NatureMapr 2018 18
131+
28 NatureMapr 2019 26
132+
29 NatureMapr 2020 24
133+
30 NatureMapr 2021 14
134+
31 NatureMapr 2022 16
135+
32 NatureMapr 2023 15
136+
33 NatureMapr 2024 16
137+
34 NatureMapr 2025 4
138138
35 ALA species sightings and OzAtlas 2018 7
139139
36 ALA species sightings and OzAtlas 2019 5
140140
37 ALA species sightings and OzAtlas 2020 1

_episodes/06-Make-a-Map.md

+23-23
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ galah.atlas_counts(
3131
```
3232
```output
3333
totalRecords
34-
0 27969
34+
0 39840
3535
```
3636

3737
All we have to do to download occurrences is to change the function name `atlas_counts` to `atlas_occurrences`, but first, we need to provide an email registered with the ALA to `galah-python`:
@@ -46,18 +46,18 @@ galah.atlas_occurrences(
4646
)
4747
```
4848
```output
49-
recordID catalogNumber ... dataGeneralizations spatiallyValid
50-
0 0008c41d-fd35-421a-9976-8213ade88ba8 NaN ... NaN True
51-
1 000c1c20-bec3-4fc3-8d65-3de76961a998 NaN ... NaN True
52-
2 000e46ad-9ace-437c-ac31-48843f603c9c NaN ... NaN True
53-
3 001229c0-4c48-486f-8d5d-5ddfe7420756 NaN ... NaN True
54-
4 0014b8ff-ddd5-4a24-b7ee-cb57c62ba2d2 NaN ... NaN True
55-
... ... ... ... ... ...
56-
27964 fff85846-94f6-4285-b520-219a574beaa6 NaN ... NaN True
57-
27965 fffa5afb-2388-4ec2-937c-d73c104352d3 NaN ... NaN True
58-
27966 fffb30c7-cee4-4d5d-8c36-b15721ac4565 NaN ... NaN True
59-
27967 fffba153-a597-4ed2-a325-8f9d3e567ae9 NaN ... NaN True
60-
27968 fffd964f-475f-4a9d-9763-5654fa842aee NaN ... NaN True
49+
decimalLatitude decimalLongitude eventDate ... recordID dataResourceName occurrenceStatus
50+
0 -37.246800 149.375000 2020-12-27T00:00:00Z ... 56de6c10-b14d-4eeb-86ee-a50e406678d3 FrogID PRESENT
51+
1 -37.245410 149.957044 2022-10-26T00:00:00Z ... 685271bf-5bbf-4174-b8e2-c92c4b5ee586 FrogID PRESENT
52+
2 -37.245385 149.957663 2021-12-11T00:00:00Z ... 4155af9f-38bf-4093-976f-65d17029d1c4 FrogID PRESENT
53+
3 -37.245385 149.957663 2021-12-11T00:00:00Z ... aee93398-6e27-4134-a1c3-9a4c794d1ce6 FrogID PRESENT
54+
4 -37.245385 149.957663 2021-12-11T00:00:00Z ... 360887c3-4af9-4430-801e-8b7db47a2389 FrogID PRESENT
55+
... ... ... ... ... ... ... ...
56+
39835 -28.207514 153.442592 2018-11-15T00:00:00Z ... 10ec5c96-fb1e-4545-9e85-dc9073e3a977 FrogID PRESENT
57+
39836 -28.207494 153.442526 2021-11-17T00:00:00Z ... 302250c5-6b7b-4d5d-b51b-12fa305ae8c9 FrogID PRESENT
58+
39837 -28.207472 153.442497 2018-11-15T00:00:00Z ... 101f5f04-b0e9-45b4-a9c0-3e50d97f1dfe FrogID PRESENT
59+
39838 -28.207442 153.442328 2020-02-07T00:00:00Z ... f827c2ef-fcf4-40cc-ab3d-fc1f4ec8c61b FrogID PRESENT
60+
39839 -28.207108 153.443021 2021-02-19T00:00:00Z ... f02823d8-f53a-4cde-b546-d3bd7ff7b075 FrogID PRESENT
6161
```
6262

6363
All of this data for each occurrence record is great! However, say you want to only get specific columns of the table, like `decimalLatitude`,`decimalLongitude` and `scientificName`. You can specify column names in the `fields` argument of `atlas_occurrences`:
@@ -74,17 +74,17 @@ galah.atlas_occurrences(
7474
```
7575
```output
7676
scientificName decimalLatitude decimalLongitude
77-
0 Litoria peronii -32.303061 151.687980
78-
1 Litoria peronii -32.809788 151.353210
79-
2 Litoria peronii -29.929163 152.008692
80-
3 Litoria peronii -36.354229 150.075424
81-
4 Litoria peronii -34.496047 150.777103
77+
0 Litoria peronii -33.624100 151.323000
78+
1 Litoria peronii -33.718800 151.003000
79+
2 Litoria peronii -33.324700 151.365000
80+
3 Litoria peronii -33.572700 148.436000
81+
4 Litoria peronii -35.115900 147.981000
8282
... ... ... ...
83-
27964 Litoria peronii -30.101165 153.161719
84-
27965 Litoria peronii -34.053162 151.086362
85-
27966 Litoria peronii -33.614032 150.697754
86-
27967 Litoria peronii -34.643233 150.325404
87-
27968 Litoria peronii -34.314148 150.918278
83+
39835 Litoria peronii -33.817474 151.177367
84+
39836 Litoria peronii -33.948932 151.251668
85+
39837 Litoria peronii -33.930552 151.237679
86+
39838 Litoria peronii -33.686587 151.096895
87+
39839 Litoria peronii -33.448529 151.375129
8888
```
8989

9090
# Make a map of *Litoria peronii* occurrence records since 2018 in New South Wales

_episodes/07-Taxonomy-Examples.md

+29-29
Original file line numberDiff line numberDiff line change
@@ -33,8 +33,8 @@ galah.galah_config(atlas="Australia",email="your-email-here")
3333
galah.search_taxa(taxa="Petroica boodang")
3434
```
3535
```output
36-
scientificName scientificNameAuthorship taxonConceptID ... species vernacularName issues
37-
0 Petroica (Petroica) boodang (Lesson, 1838) https://biodiversity.org.au/afd/taxa/a3e5376b-... ... Petroica boodang Scarlet Robin noIssue
36+
scientificName scientificNameAuthorship ... species vernacularName issues
37+
0 Petroica (Petroica) boodang (Lesson, 1838) ... Petroica boodang Scarlet Robin noIssue
3838
```
3939

4040
It can also return taxonomic information for multiple species, including synonyms and Indigneous names.
@@ -66,8 +66,8 @@ Please use the `scientific_name` argument to clarify taxa.
6666
galah.search_taxa(scientific_name={"kingdom": ["Fungi"],"scientificName": ["Morganella"]})
6767
```
6868
```output
69-
scientificName scientificNameAuthorship taxonConceptID rank ... order family genus issues
70-
0 Morganella Zeller https://id.biodiversity.org.au/node/fungi/6009... genus ... Agaricales Agaricaceae Morganella noIssue
69+
scientificName scientificNameAuthorship rank ... order family genus issues
70+
0 Morganella Zeller genus ... Agaricales Agaricaceae Morganella noIssue
7171
```
7272

7373
This disambiguation of the *Morganella* taxa can then be used by `atlas_counts()`, `atlas_occurrences()`, `atlas_species()` or `atlas_media()` by providing the keyword `scientific_name` to any of these functions.
@@ -110,7 +110,7 @@ galah.atlas_counts(taxa="Petroica boodang")
110110
```
111111
```output
112112
totalRecords
113-
0 133664
113+
0 132331
114114
```
115115

116116
```python
@@ -122,16 +122,16 @@ galah.atlas_counts(taxa=aus_petroica,group_by=["species","vernacularName"])
122122
```output
123123
species vernacularName count
124124
0 Petroica boodang Eastern Scarlet Robin 3766
125-
1 Petroica boodang Scarlet Robin 129596
125+
1 Petroica boodang Scarlet Robin 128261
126126
2 Petroica boodang South-western Scarlet Robin 211
127-
3 Petroica boodang Tasmanian Scarlet Robin 91
128-
4 Petroica goodenovii Red-capped Robin 120523
129-
5 Petroica multicolor Pacific Robin 6795
130-
6 Petroica phoenicea Flame Robin 88884
127+
3 Petroica boodang Tasmanian Scarlet Robin 93
128+
4 Petroica goodenovii Red-capped Robin 120947
129+
5 Petroica multicolor Pacific Robin 6856
130+
6 Petroica phoenicea Flame Robin 82751
131131
7 Petroica rodinogaster Mainland Pink Robin 69
132-
8 Petroica rodinogaster Pink Robin 15753
133-
9 Petroica rodinogaster Tasmanian Pink Robin 45
134-
10 Petroica rosea Rose Robin 60276
132+
8 Petroica rodinogaster Pink Robin 15608
133+
9 Petroica rodinogaster Tasmanian Pink Robin 47
134+
10 Petroica rosea Rose Robin 60552
135135
```
136136

137137
This can be useful in searching for [paraphyletic](https://en.wikipedia.org/wiki/Paraphyly) or [polyphyletic](http://en.wikipedia.org/wiki/Polyphyly) groups. For example, to get counts of non-chordates:
@@ -146,11 +146,11 @@ non_chordates.head()
146146
```
147147
```output
148148
phylum count
149-
0 Acanthocephala 481
150-
1 Annelida 329585
151-
2 Arthropoda 10086467
152-
3 Brachiopoda 11574
153-
4 Bryozoa 32837
149+
0 Acanthocephala 482
150+
1 Annelida 332234
151+
2 Arthropoda 10135041
152+
3 Brachiopoda 11634
153+
4 Bryozoa 32937
154154
```
155155

156156
# OPTIONAL: Deciding between `filters=`, `search_taxa()`, and taxonomic ranks
@@ -171,15 +171,15 @@ pitta_ranks
171171
scientificName taxonRank count
172172
0 Pitta genus 70
173173
1 Pitta (Erythropitta) subgenus 882
174-
2 Pitta (Erythropitta) erythrogaster species 189
174+
2 Pitta (Erythropitta) erythrogaster species 190
175175
3 Pitta (Erythropitta) erythrogaster digglesi subspecies 6
176-
4 Pitta (Pitta) iris species 6599
176+
4 Pitta (Pitta) iris species 6600
177177
5 Pitta (Pitta) iris iris subspecies 91
178178
6 Pitta (Pitta) iris johnstoneiana subspecies 27
179-
7 Pitta (Pitta) versicolor species 30240
179+
7 Pitta (Pitta) versicolor species 30295
180180
8 Pitta (Pitta) versicolor intermedia subspecies 64
181181
9 Pitta (Pitta) versicolor simillima subspecies 53
182-
10 Pitta (Pitta) versicolor versicolor subspecies 406
182+
10 Pitta (Pitta) versicolor versicolor subspecies 424
183183
```
184184

185185
If, for instance, you have the correct species or subspecies name, then searching for matches against the species and subspecies fields, respectively, will provide more precise results. This is because the field `scientificName` may include subgenera. If you’ve used `search_taxa()` to get the ALA-matched name of a taxon and only want records identified to a particular level of classification, searching for matches against `scientificName` is recommended.
@@ -215,17 +215,17 @@ galah.atlas_counts(
215215
```
216216
```output
217217
scientificName count
218-
0 Aquila (Uroaetus) audax fleayi 5088
219-
1 Bettongia gaimardi 2282
218+
0 Aquila (Uroaetus) audax fleayi 5090
219+
1 Bettongia gaimardi 2284
220220
2 Bettongia gaimardi cuniculus 54
221221
3 Bettongia gaimardi gaimardi 9
222-
4 Melanodryas (Amaurodryas) vittata 15799
222+
4 Melanodryas (Amaurodryas) vittata 15807
223223
5 Melanodryas (Amaurodryas) vittata kingi 16
224-
6 Melanodryas (Amaurodryas) vittata vittata 60
225-
7 Platycercus (Platycercus) caledonicus 51480
224+
6 Melanodryas (Amaurodryas) vittata vittata 62
225+
7 Platycercus (Platycercus) caledonicus 51508
226226
8 Platycercus (Platycercus) caledonicus brownii 24
227227
9 Platycercus (Platycercus) caledonicus caledonicus 50
228-
10 Sarcophilus 130
229-
11 Sarcophilus harrisii 36554
228+
10 Sarcophilus 131
229+
11 Sarcophilus harrisii 36607
230230
12 Tyto novaehollandiae castanops 85
231231
```

0 commit comments

Comments
 (0)