-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
180 lines (149 loc) · 7.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import json
import os
import shutil
import numpy as np
import torch
import torchvision.transforms as transforms
import torch.utils.data as data
from torch.utils.tensorboard import SummaryWriter
from functions import labels2cat, Dataset_CRNN, train, acc_calculate, validation
from model import CRNN
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from tripletloss import TripletLoss
import random
import argparse
import warnings
from time import time
warnings.filterwarnings('ignore')
def check_path(path):
if not os.path.exists(path):
os.mkdir(path)
if __name__ == '__main__':
start_time = time()
check_path('./best_models')
check_path('./save_models')
check_path('./outputs')
# set parameters
parser = argparse.ArgumentParser()
# occlusion / board
# light / dark
#parser.add_argument('--train_image_path', type=str, default='./datasets/occlusion/desk/train/crop') # 路径
#parser.add_argument('--train_mat_path', type=str, default='./datasets/occlusion/desk/train/Mat')
#parser.add_argument('--test_image_path', type=str, default='./datasets/occlusion/desk/test/crop') # 路径
#parser.add_argument('--test_mat_path', type=str, default='./datasets/occlusion/desk/test/Mat')
parser.add_argument('--train_image_path', type=str, default='./datasets/collect/crop') # 路径
parser.add_argument('--train_mat_path', type=str, default='./datasets/collect/Mat')
parser.add_argument('--test_image_path', type=str, default='./datasets/occlusion/board/test/crop') # 路径
parser.add_argument('--test_mat_path', type=str, default='./datasets/occlusion/board/test/Mat')
parser.add_argument('--save_model_path', type=str, default='./save_models/')
parser.add_argument('--CNN_fc_hidden1', type=int, default=64) # ?
parser.add_argument('--CNN_fc_hidden2', type=int, default=64)
parser.add_argument('--CNN_embed_dim', type=int, default=64) # fc1的out_features
parser.add_argument('--img_x', type=int, default=64) # 尺寸
parser.add_argument('--img_y', type=int, default=64)
parser.add_argument('--dropout_p', type=float, default=0.4) # ?
parser.add_argument('--RNN_hidden_layers', type=int, default=1) #
parser.add_argument('--RNN_hidden_nodes', type=int, default=64)
parser.add_argument('--RNN_FC_dim', type=int, default=64)
parser.add_argument('--k', type=int, default=8)
parser.add_argument('--epochs', type=int, default=30) # 改
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--alpha', type=float, default=0.001)
parser.add_argument('--n_frames', type=int, default=32)
parser.add_argument('--num_workers', type=int, default=16)
parser.add_argument('--input_type', type=str, default='both', choices=['image', 'mat', 'both'])
parser.add_argument('--seed', type=int, default=3407)
args = parser.parse_args()
args.load_model_path = f'./best_models/crnn_best_{args.input_type}.pt'
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use CPU or GPU
# print(device)
# convert labels -> category
action_names = os.listdir(args.train_image_path)
le = LabelEncoder()
le.fit(action_names)
# show how many classes
print('labels:{}'.format(list(le.classes_)))
# convert category -> 1-hot
action_category = le.transform(action_names).reshape(-1, 1)
enc = OneHotEncoder()
enc.fit(action_category)
train_actions = []
train_all_names = []
test_actions = []
test_all_names = []
for action in action_names:
for f_name in os.listdir(f'{args.train_image_path}/{action}'):
train_actions.append(action)
train_all_names.append(f'{action}/{f_name}')
for f_name in os.listdir(f'{args.test_image_path}/{action}'):
test_actions.append(action)
test_all_names.append(f'{action}/{f_name}')
train_list = train_all_names
train_label = labels2cat(le, train_actions)
test_list = test_all_names # all video file names
test_label = labels2cat(le, test_actions) # all video labels
transform = transforms.Compose([transforms.Resize([args.img_x, args.img_y]), transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])]) # 串联多个图片变换
train_set = Dataset_CRNN(args.train_image_path, args.train_mat_path,
train_list, train_label, args.n_frames, transform=transform, input_type=args.input_type)
test_set = Dataset_CRNN(args.test_image_path, args.test_mat_path,
test_list, test_label, args.n_frames, transform=transform, input_type=args.input_type)
train_loader = data.DataLoader(train_set, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers)
test_loader = data.DataLoader(test_set, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers)
# import mat shape
mat_x, mat_y = 30, 500
# Create model
model = CRNN(args.img_x, args.img_y, mat_x, mat_y, args.CNN_fc_hidden1,
args.CNN_fc_hidden2, args.CNN_embed_dim, args.RNN_hidden_layers,
args.RNN_hidden_nodes, args.RNN_FC_dim, args.dropout_p, args.k, args.input_type).to(device)
print(model)
# model = torch.load(args.load_model_path, map_location=device)
metric_loss = TripletLoss(margin=0.3)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
# start training
best_valid_acc = 0.0
best_test_acc = 0.0
for epoch in range(args.epochs):
# train, test model
# model.train()
start = time()
train_loss = train(model, device, train_loader, optimizer, metric_loss, args.alpha)
end = time() - start
print('epoch', end)
print('Epoch:{} train_loss:{:.6f}'.format(epoch + 1, train_loss))
if not os.path.exists(args.save_model_path):
os.mkdir(args.save_model_path)
# save Pytorch models of best record
torch.save(model, os.path.join(args.save_model_path,
'crnn_best_{}.pt'.format(args.input_type))) # save best model
# torch.save(model.mat_CNN, os.path.join('./models', 'mat_CNN.pt'))
# torch.save(model.image_CNN, os.path.join('./models', 'image_CNN.pt'))
# torch.save(model.image_RNN, os.path.join('./models', 'image_RNN.pt'))
# test model
shutil.copyfile('{}/crnn_best_{}.pt'.format(args.save_model_path, args.input_type), args.load_model_path)
model = torch.load(args.load_model_path)
gallery_feat, gallery_label, prob_feat, prob_label = validation(model, device, train_loader, test_loader)
gallery_feat = torch.cat(gallery_feat)
gallery_label = torch.cat(gallery_label)
prob_feat = torch.cat(prob_feat)
prob_label = torch.cat(prob_label)
test_correct, test_total = acc_calculate(gallery_feat, gallery_label, prob_feat, prob_label)
with open(f'./outputs/saved_outputs_{args.input_type}.json', 'w', encoding='utf-8') as f:
f.write(json.dumps({
'gallery_feat': gallery_feat.detach().cpu().numpy().tolist(),
'gallery_label': gallery_label.detach().cpu().numpy().tolist(),
'prob_feat': prob_feat.detach().cpu().numpy().tolist(),
'prob_label': prob_label.detach().cpu().numpy().tolist()
}))
test_acc = test_correct / test_total * 100
print('test_acc:{:.3f}%'.format(test_acc))
print("total time used: ", time() - start_time)