Skip to content

๐Ÿš€ Advanced Guide to GPUs and Parallel Computing

Amir M. Parvizi edited this page Nov 19, 2024 · 1 revision

๐Ÿ’ป Hardware Architecture

Processing Units Comparison Matrix

Feature CPU GPU TPU FPGA
Purpose General Graphics/Parallel AI/ML Configurable
Clock Speed โšก High ๐Ÿ”ธ Medium ๐Ÿ”ธ Medium ๐Ÿ”ธ Medium
Cores ๐Ÿ”ธ Few โšก Many โšก Many ๐Ÿ“Š Variable
Cache โšก High ๐Ÿ”ธ Low ๐Ÿ”ธ Medium ๐Ÿ”ธ Low
Latency โšก Low ๐Ÿ”ธ High ๐Ÿ”ธ Medium โšก Very Low
Throughput ๐Ÿ”ธ Low โšก High โšก High โšก Very High
Power Usage ๐Ÿ”ธ Medium ๐Ÿ”ธ High ๐Ÿ”ธ Medium โš ๏ธ Very High

๐ŸŽฎ NVIDIA Evolution

From Gaming to AI Revolution

Timeline

graph LR
    A[1990s] --> B[GeForce]
    B --> C[CUDA]
    C --> D[Tesla]
    D --> E[Modern GPUs]

Loading

โšก Deep Learning Performance

Why GPUs Excel in Deep Learning?

graph TD
    A[Parallel Processing] --> B[Matrix Operations]
    B --> C[High Throughput]
    C --> D[Faster Training]
    A --> E[Multiple Cores]
    E --> F[Concurrent Execution]
Loading

๐Ÿ”ง CUDA Programming Flow

sequenceDiagram
    participant CPU
    participant GPU
    CPU->>CPU: Allocate Memory
    CPU->>GPU: Copy Data
    GPU->>GPU: Execute Kernel
    GPU->>CPU: Return Results
Loading

๐Ÿ“˜ Key Terminology

Essential Concepts

  • Kernel: GPU-specific functions
  • Thread/Block/Grid: Execution hierarchy
  • GEMM: Matrix multiplication operations
  • Host/Device: CPU/GPU terminology

Memory Hierarchy

graph TD
    A[Global Memory]
    A1[Shared Memory]
    A2[L2 Cache]
    A1a[Registers]
    A1b[L1 Cache]
    B[Host Memory]

    A --> A1
    A --> A2
    A1 --> A1a
    A1 --> A1b
    B --> A

Loading

๐Ÿ” Additional Resources

Clone this wiki locally