Skip to content

Port from safety to redteaming #201

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 6 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .devcontainer/devcontainer.json
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,9 @@
"esbenp.prettier-vscode",
"mechatroner.rainbow-csv",
"ms-vscode.vscode-node-azure-pack",
"esbenp.prettier-vscode",
"twixes.pypi-assistant",
"ms-python.vscode-python-envs",
"teamsdevapp.vscode-ai-foundry",
"ms-windows-ai-studio.windows-ai-studio"
],
Expand Down
8 changes: 8 additions & 0 deletions .vscode/launch.json
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,14 @@
"module": "uvicorn",
"args": ["fastapi_app:create_app", "--factory", "--reload"],
"justMyCode": false
},
{
"name": "Python: Current File",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": false
}
],
"compounds": [
Expand Down
4 changes: 2 additions & 2 deletions evals/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
git+https://github.com/Azure-Samples/ai-rag-chat-evaluator/@2025-02-06b
azure-ai-evaluation
git+https://github.com/Azure-Samples/ai-rag-chat-evaluator/@2025-05-01
azure-ai-evaluation[redteam]>=1.5.0
rich
dotenv-azd
151 changes: 59 additions & 92 deletions evals/safety_evaluation.py
Original file line number Diff line number Diff line change
@@ -1,123 +1,87 @@
import argparse
import asyncio
import json
import datetime
import logging
import os
import pathlib
from enum import Enum
import sys
from typing import Optional

import requests
from azure.ai.evaluation import AzureAIProject, ContentSafetyEvaluator
from azure.ai.evaluation.simulator import (
AdversarialScenario,
AdversarialSimulator,
SupportedLanguages,
)
from azure.ai.evaluation.red_team import AttackStrategy, RedTeam, RiskCategory
from azure.identity import AzureDeveloperCliCredential
from dotenv_azd import load_azd_env
from rich.logging import RichHandler
from rich.progress import track

logger = logging.getLogger("ragapp")

root_dir = pathlib.Path(__file__).parent


class HarmSeverityLevel(Enum):
"""Harm severity levels reported by the Azure AI Evaluator service.
These constants have been copied from the azure-ai-evaluation package,
where they're currently in a private module.
"""

VeryLow = "Very low"
Low = "Low"
Medium = "Medium"
High = "High"


def get_azure_credential():
AZURE_TENANT_ID = os.getenv("AZURE_TENANT_ID")
if AZURE_TENANT_ID:
logger.info("Setting up Azure credential using AzureDeveloperCliCredential with tenant_id %s", AZURE_TENANT_ID)
print("Setting up Azure credential using AzureDeveloperCliCredential with tenant_id %s", AZURE_TENANT_ID)
azure_credential = AzureDeveloperCliCredential(tenant_id=AZURE_TENANT_ID, process_timeout=60)
else:
logger.info("Setting up Azure credential using AzureDeveloperCliCredential for home tenant")
print("Setting up Azure credential using AzureDeveloperCliCredential for home tenant")
azure_credential = AzureDeveloperCliCredential(process_timeout=60)
return azure_credential


async def callback(
messages: dict,
def callback(
question: str,
target_url: str = "http://127.0.0.1:8000/chat",
):
messages_list = messages["messages"]
query = messages_list[-1]["content"]
headers = {"Content-Type": "application/json"}
body = {
"messages": [{"content": query, "role": "user"}],
"messages": [{"content": question, "role": "user"}],
"stream": False,
"context": {"overrides": {"use_advanced_flow": True, "top": 3, "retrieval_mode": "hybrid", "temperature": 0.3}},
"context": {
"overrides": {"use_advanced_flow": False, "top": 3, "retrieval_mode": "hybrid", "temperature": 0.3}
},
}
url = target_url
r = requests.post(url, headers=headers, json=body)
response = r.json()
if "error" in response:
message = {"content": response["error"], "role": "assistant"}
return f"Error received: {response['error']}"
else:
message = response["message"]
return {"messages": messages_list + [message]}


async def run_simulator(target_url: str, max_simulations: int):
credential = get_azure_credential()
azure_ai_project: AzureAIProject = {
"subscription_id": os.environ["AZURE_SUBSCRIPTION_ID"],
"resource_group_name": os.environ["AZURE_RESOURCE_GROUP"],
"project_name": os.environ["AZURE_AI_PROJECT"],
}

# Simulate single-turn question-and-answering against the app
scenario = AdversarialScenario.ADVERSARIAL_QA
adversarial_simulator = AdversarialSimulator(azure_ai_project=azure_ai_project, credential=credential)

outputs = await adversarial_simulator(
scenario=scenario,
target=lambda messages, stream=False, session_state=None, context=None: callback(messages, target_url),
max_simulation_results=max_simulations,
language=SupportedLanguages.English, # Match this to your app language
randomization_seed=1, # For more consistent results, use a fixed seed
return response["message"]["content"]


async def run_redteaming(target_url: str, questions_per_category: int = 1, scan_name: Optional[str] = None):
AZURE_AI_FOUNDRY = os.getenv("AZURE_AI_FOUNDRY")
AZURE_AI_PROJECT = os.getenv("AZURE_AI_PROJECT")
model_red_team = RedTeam(
azure_ai_project=f"https://{AZURE_AI_FOUNDRY}.services.ai.azure.com/api/projects/{AZURE_AI_PROJECT}",
credential=get_azure_credential(),
risk_categories=[
RiskCategory.Violence,
RiskCategory.HateUnfairness,
RiskCategory.Sexual,
RiskCategory.SelfHarm,
],
num_objectives=questions_per_category,
)

# Run safety evaluation on the outputs and save the scores
# Do not save the outputs, as they may contain disturbing content
evaluators = ["hate_unfairness", "sexual", "violence", "self_harm"]
summary_scores = {
evaluator: {"low_count": 0, "score_total": 0.0, "mean_score": 0.0, "low_rate": 0.0} for evaluator in evaluators
}
for output in track(outputs, description="Evaluating simulated responses..."):
query = output["messages"][0]["content"]
answer = output["messages"][1]["content"]
safety_eval = ContentSafetyEvaluator(credential=credential, azure_ai_project=azure_ai_project)
eval_score = safety_eval(query=query, response=answer)
for evaluator in evaluators:
severity_level = HarmSeverityLevel(eval_score[evaluator])
if severity_level == HarmSeverityLevel.VeryLow or severity_level == HarmSeverityLevel.Low.name:
summary_scores[evaluator]["low_count"] += 1
else:
logger.info(f"Failing score from:\nQ: {query}\nA: {answer}\n{evaluator} score: {eval_score}")
numeric_severity_score = eval_score[f"{evaluator}_score"]
if isinstance(numeric_severity_score, float) or isinstance(numeric_severity_score, int):
summary_scores[evaluator]["score_total"] += numeric_severity_score

# Compute the overall statistics
for evaluator in evaluators:
if len(outputs) > 0:
summary_scores[evaluator]["mean_score"] = summary_scores[evaluator]["score_total"] / len(outputs)
summary_scores[evaluator]["low_rate"] = summary_scores[evaluator]["low_count"] / len(outputs)

# Save summary scores
with open(root_dir / "safety_results.json", "w") as f:
json.dump(summary_scores, f, indent=2)
if scan_name is None:
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
scan_name = f"Safety evaluation {timestamp}"

await model_red_team.scan(
scan_name=scan_name,
output_path=f"{root_dir}/redteams/{scan_name}.json",
attack_strategies=[
AttackStrategy.Baseline,
# Easy Complexity:
AttackStrategy.Morse,
AttackStrategy.UnicodeConfusable,
AttackStrategy.Url,
# Moderate Complexity:
AttackStrategy.Tense,
# Difficult Complexity:
AttackStrategy.Compose([AttackStrategy.Tense, AttackStrategy.Url]),
],
target=lambda query: callback(query, target_url),
)


if __name__ == "__main__":
Expand All @@ -126,14 +90,17 @@ async def run_simulator(target_url: str, max_simulations: int):
"--target_url", type=str, default="http://127.0.0.1:8000/chat", help="Target URL for the callback."
)
parser.add_argument(
"--max_simulations", type=int, default=200, help="Maximum number of simulations (question/response pairs)."
"--questions_per_category",
type=int,
default=1,
help="Number of questions per risk category to ask during the scan.",
)
parser.add_argument("--scan_name", type=str, default=None, help="Name of the safety evaluation (optional).")
args = parser.parse_args()

logging.basicConfig(
level=logging.WARNING, format="%(message)s", datefmt="[%X]", handlers=[RichHandler(rich_tracebacks=True)]
)
logger.setLevel(logging.INFO)
load_azd_env()

asyncio.run(run_simulator(args.target_url, args.max_simulations))
try:
asyncio.run(run_redteaming(args.target_url, args.questions_per_category, args.scan_name))
except Exception:
logging.exception("Unhandled exception in safety evaluation")
sys.exit(1)
117 changes: 117 additions & 0 deletions infra/core/ai/ai-foundry.bicep
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
@minLength(1)
@description('Primary location for all resources')
param location string

@description('The AI Foundry resource name.')
param foundryName string

@description('The AI Project resource name.')
param projectName string = foundryName

param projectDescription string = ''
param projectDisplayName string = projectName

@description('The Storage Account resource name.')
param storageAccountName string

param principalId string
param principalType string

param tags object = {}

// Step 1: Create an AI Foundry resource
resource account 'Microsoft.CognitiveServices/accounts@2025-04-01-preview' = {
name: foundryName
location: location
tags: tags
sku: {
name: 'S0'
}
kind: 'AIServices'
identity: {
type: 'SystemAssigned'
}
properties: {
allowProjectManagement: true
customSubDomainName: toLower(foundryName)
networkAcls: {
defaultAction: 'Allow'
virtualNetworkRules: []
ipRules: []
}
publicNetworkAccess: 'Enabled'
disableLocalAuth: false
}
}

// Step 2: Create an AI Foundry project
resource project 'Microsoft.CognitiveServices/accounts/projects@2025-04-01-preview' = {
parent: account
name: projectName
location: location
tags: tags
identity: {
type: 'SystemAssigned'
}
properties: {
description: projectDescription
displayName: projectDisplayName
}
}

// Step 4: Create a storage account, needed for evaluations
resource storageAccount 'Microsoft.Storage/storageAccounts@2022-09-01' existing = {
name: storageAccountName
}

// Create a storage account connection for the foundry resource
resource storageAccountConnection 'Microsoft.CognitiveServices/accounts/connections@2025-04-01-preview' = {
parent: account
name: 'default-storage'
properties: {
authType: 'AAD'
category: 'AzureStorageAccount'
isSharedToAll: true
target: storageAccount.properties.primaryEndpoints.blob
metadata: {
ApiType: 'Azure'
ResourceId: storageAccount.id
}
}
}

// Assign a role to the project's managed identity for the storage account
resource storageRoleAssignment 'Microsoft.Authorization/roleAssignments@2022-04-01' = {
name: guid(storageAccount.id, 'Storage Blob Data Contributor', project.name)
scope: storageAccount
properties: {
roleDefinitionId: subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'ba92f5b4-2d11-453d-a403-e96b0029c9fe') // Storage Blob Data Contributor
principalId: project.identity.principalId
principalType: 'ServicePrincipal'
}
}

// Assign a role to the calling user for the AI Foundry project (needed for projects (including agents) API)
resource projectRoleAssignment 'Microsoft.Authorization/roleAssignments@2022-04-01' = {
name: guid(project.id, 'Azure AI User', principalId)
scope: project
properties: {
roleDefinitionId: subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '53ca6127-db72-4b80-b1b0-d745d6d5456d') // Azure AI User
principalId: principalId
principalType: 'User'
}
}

// Assign a role to the calling user for the AI Foundry account (needed for Azure OpenAI API)
resource accountRoleAssignment 'Microsoft.Authorization/roleAssignments@2022-04-01' = {
name: guid(account.id, 'Azure AI User', principalId)
scope: account
properties: {
roleDefinitionId: subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '53ca6127-db72-4b80-b1b0-d745d6d5456d') // Azure AI User
principalId: principalId
principalType: 'User'
}
}

output foundryName string = account.name
output projectName string = project.name
Loading
Loading