推荐大家经常使用知乎和google搜索你看不懂的问题~自己主动学习十分重要!
Best代表马上阅读
Oral代表以后必须读
- 迁移学习paper list与学习上手指南
- 目录
- 0. 热点方向
- 3D point cloud
- Continuous Learning
- Few-shot/ semi-supervised/ long-tailed classification/segmentaiton/detection
- Vision-Language/ prompt learning/ Multimodal
- Diffusion model
- OOD detection/generalization
- 大模型/ pre-training/ self-supervised/ representation learning
- BEV
- edge computing transfer/ federate learning
- transfer reinforcement learning
- 3D point cloud
- 1.迁移学习的背景介绍
- 2.样本加权方法
- 3.特征学习方法及其扩展
- 4.纯深度学习网络结构研究
- 5.生成对抗网络(GAN)
- 6.深度迁移学习
- 7.Partial Domain Adaptation (PDA)
- 8.迁移学习在Semantic Segmentation中的应用
- 9.迁移学习在Object Detection中的应用
- 10. 迁移学习在Video Classification中的应用
- 11.迁移学习在Person Re-identification中的应用
- 12.迁移学习理论文章
- 其他应该看论文
- 顶会接收论文网站
- 迁移学习资源汇总网站
- 大牛主页
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Learning transferable visual models from natural language supervision | ICML 2021 | Best | 需要 | CLIP |
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery | ICCV 2021 | Best | StyleCLIP | |
Learning to Prompt for Vision-Language Models | IJCV 2022 | Oral | CoOp | |
Open-Vocabulary Object Detection via Vision and Language Knowledge Distillation | ICLR 2022 | Oral | VILD | |
OPEN-VOCABULARY OBJECT DETECTION VIA VISION AND LANGUAGE KNOWLEDGE DISTILLATION | ICLR 2022 | Oral | LSeg | |
PIX2SEQ: A LANGUAGE MODELING FRAMEWORK FOR OBJECT DETECTION | ICLR 2022 | Oral | Pix2Seq | |
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting | CVPR 2022 | Oral | DenseCLIP |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
这些文章无需讲解,最先阅读,对迁移学习有个浅显了解
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
迁移学习简明手册 | 这是中文版pdf | Best | ||
A Survey on Transfer Learning | IEEE TKDE | Best | ||
Deep Visual Domain Adaptation A Survey | Oral | |||
Transfer Adaptation Learning:A Decade Survey | Oral |
这类方法已是很早期的方法了,但是需要了解
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Prediction Reweighting for Domain Adaptation | IEEE TNNLS | Best | PRDA | |
Correcting Sample Selection Bias by Unlabeled Data | NIPS | Oral | KMM | |
Unsupervised Domain Adaptation with Distribution Matching Machines | AAAI 2018 | Oral |
主要是浅层优化算法
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Domain Adaptation via Transfer Component Analysis | IEEE TNNLS | Best | TCA | |
Transfer Feature Learning with Joint Distribution Adaptation | CVPR | Best | 需要 | JDA |
Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adapation | IEEE TIP | Best | 需要 | DICD |
Transfer Joint Matching for Unsupervised Domain Adaptation | CVPR | Oral | TJM | |
Unsupervised Domain Adaptation With Label and Structural Consistency | IEEE TIP | Oral | ||
Joint Geometrical and Statistical Alignment for Visual Domain Adaptation | CVPR 2018 | Oral | JGSA | |
Adaptation Regularization: A General Framework for Transfer Learning | IEEE TKDE | Oral |
基础中的基础!推荐先看Stanford CS231n课程,百度搜索即可,可以快速了解深度学习
paper | 来源 | Novelty | 代码复现 | 简称 |
---|
| |ImageNet Classification with Deep Convolutional Neural Networks |NIPS|Best|需要|AlexNet| |Very Deep Convolutional Networks for Large-Scale Image Recognition ||Best|需要|VGG| |Deep Residual Learning for Image Recognition |CVPR 2016 Best paper|Best|需要|ResNet| |Densely Connected Convolutional Networks |CVPR 2017 Best paper|Best|需要|DenseNet| |Squeeze-and-Excitation Networks |CVPR|Best||SENet| |Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift |ICML|Best ||BN| |Deep Networks with Stochastic Depth |ECCV 2016 spotlight|Oral||| |Going deeper with convolutions |NIPS|Oral||InceptionV1/GoogLeNet| |Rethinking the Inception Architecture for Computer Vision |CVPR|Oral||InceptionV2/V3| |Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning |CVPR|Oral||InceptionV4/Inception-ResNet| |Aggregated Residual Transformations for Deep Neural Networks |CVPR|Oral||ResNext|
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Generative Adversarial Nets | NIPS | Best | 需要 | GAN |
Wasserstein GAN | Best | WGAN | ||
Conditional Generative Adversarial Nets | Oral | CGAN | ||
Least Squares Generative Adversarial Networks | ICCV | Oral | LSGAN |
Deep Domain Adaptation,针对分类问题,研究重点!!
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
How transferable are features in deep neural networks | NIPS 2014 | Best | ||
Learning Transferable Features with Deep Adaptation Networks | ICML 2015 | Best | 需要 | DAN |
Unsupervised Domain Adaptation by Backpropagation | ICML 2015 | Best | 需要 | DANN/RevGrad |
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation | CVPR 2018 | Best | 需要 | MCD |
Unsupervised Domain Adaptation with Residual Transfer Networks | NIPS 2015 | Oral | RTN | |
CyCADA: Cycle-Consistent Adversarial Domain Adaptation | ICML | Oral | CyCADA | |
Multi-Adversarial Domain Adaptation | AAAI 2018 | Oral | MADA | |
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation | CVPR 2019 | Oral | SWD | |
Moment Matching for Multi-Source Domain Adaptation | ICML 2019 | Oral | ||
Bridging Theory and Algorithm for Domain Adaptation | ICML 2019 | Oral | MDD | |
Conditional Adversarial Domain Adaptation | NIPS 2019 | Best | CDAN | |
Contrastive Adaptation Network for Unsupervised Domain Adaptation | CVPR 2018 | Oral | CAN |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Partial Transfer Learning with Selective Adversarial Networks | CVPR 2018 | Best | 需要 | SAN |
Importance Weighted Adversarial Nets for Partial Domain Adaptation | CVPR 2018 | Best | 需要 | IWAN |
Partial Adversarial Domain Adaptation | ECCV 2018 | Oral | PADA | |
Learning to Transfer Examples for Partial Domain Adaptation | CVPR 2019 | Oral | ETN | |
Universal Domain Adaptation | CVPR 2019 | Oral |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Fully Convolutional Networks for Semantic Segmentation | CVPR 2015 | Best | FCN | |
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers | NeurIPS 2021 | 必读 1 | 需要 | SegFormer |
Learning to Adapt Structured Output Space for Semantic Segmentation | CVPR 2018 | 必读 1 | 需要 | AdaptSegNet |
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation | CVPR 2022 | 必读 1 | 需要 | DAFormer |
CyCADA - Cycle-Consistent Adversarial Domain Adaptation | ICML | Best | CyCADA | |
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation | CVPR 2019 | Oral | CLAN | |
ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation | CVPR 2019 | Oral | ADVENT | |
FDA: Fourier Domain Adaptation for Semantic Segmentation | CVPR 2020 | Oral | FDA | |
Confidence Regularized Self-Training | ICCV 2019 | Oral | CRST | |
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation | CVPR 2021 | Oral | ProDA |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Domain Adaptive Faster R-CNN for Object Detection in the Wild | CVPR 2018 | Oral | ||
Multi-adversarial Faster-RCNN for Unrestricted Object Detection | ICCV 2019 | Oral |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Temporal Attentive Alignment for Large-Scale Video Domain Adaptation | ICCV 2019 | Best |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification | CVPR 2018 | Best | ||
Self-similarity Grouping: A Simple Unsupervised Cross Domain Adaptation Approach for Person Re-identification | ICCV 2019 | Best |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Analysis of Representations for Domain Adaptation | NIPS | Best | ||
A Theory of Learning from Different Domains | Best | |||
A Kernel Method for the Two Sample Problem | NIPS | Best | MMD的全面分析 |
paper | 来源 | Novelty | 代码复现 | 简称 |
---|---|---|---|---|
Distance Metric Learning for Large Margin Nearest Neighbor Classification | NIPS | Best | LMNN | |
FaceNet - A Unified Embedding for Face Recognition and Clustering | Best | Triplet Loss |