-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathvgae_trainer.py
231 lines (180 loc) · 8.93 KB
/
vgae_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import numpy as np
import scipy.sparse as sp
import argparse
import tensorlayerx as tlx
from sklearn.metrics import roc_auc_score, average_precision_score
from gammagl.datasets import Planetoid
from gammagl.models import VGAEModel, GAEModel
from gammagl.transforms import mask_test_edges, sparse_to_tuple
from gammagl.utils import add_self_loops, calc_gcn_norm, mask_to_index
from tensorlayerx.model import TrainOneStep, WithLoss
class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, y):
preds, mu, logstd = self.backbone_network(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
#cost = data['norm'] * self._loss_fn(tlx.sigmoid(preds), data['labels']) #test
loss = self._loss_fn(data, preds, mu, logstd)
return loss
def weighted_cross_entropy_with_logits(logits, labels, pos_weight):
#labels * -log(sigmoid(logits)) * pos_weight + (1 - labels) * -log(1 - sigmoid(logits))
log_weight = 1 + (pos_weight - 1) * labels
return tlx.add((1 - labels) * logits,
log_weight * (tlx.log(tlx.exp(-tlx.abs(logits)) + 1) +
tlx.relu(-logits,)))
def get_loss_vgae(data, preds, mu, logstd):
#cost = data['norm'] * tlx.losses.sigmoid_cross_entropy(preds, data['labels'])
cost = data['norm'] * tlx.reduce_mean(weighted_cross_entropy_with_logits(preds, data['labels'], pos_weight=data['pos_weight']))
KLD = -0.5 / data['num_nodes'] * tlx.reduce_mean(tlx.reduce_sum(1 + 2 * logstd - tlx.pow(mu, 2) - tlx.pow(tlx.exp(logstd), 2), 1))
return cost + KLD
def get_loss_gae(data, preds, mu, logstd):
#cost = data['norm'] * tlx.losses.sigmoid_cross_entropy(preds, data['labels'])
cost = data['norm'] * tlx.reduce_mean(weighted_cross_entropy_with_logits(preds, data['labels'], pos_weight=data['pos_weight']))
return cost
def get_roc_score(emb, adj_orig, edges_pos, edges_neg):
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Predict on test set of edges
adj_rec = np.dot(emb, emb.T)
preds = []
pos = []
for e in edges_pos:
preds.append(sigmoid(adj_rec[e[0], e[1]]))
pos.append(adj_orig[e[0], e[1]])
preds_neg = []
neg = []
for e in edges_neg:
preds_neg.append(sigmoid(adj_rec[e[0], e[1]]))
neg.append(adj_orig[e[0], e[1]])
preds_all = np.hstack([preds, preds_neg])
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))])
roc_score = roc_auc_score(labels_all, preds_all)
ap_score = average_precision_score(labels_all, preds_all)
return roc_score, ap_score
def calculate_acc(logits, y, metrics):
"""
Args:
logits: node logits
y: node labels
metrics: tensorlayerx.metrics
Returns:
rst
"""
metrics.update(logits, y)
rst = metrics.result()
metrics.reset()
return rst
def main(args):
if str.lower(args.dataset) not in ['cora', 'pubmed', 'citeseer']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
dataset = Planetoid(args.dataset_path, args.dataset)
graph = dataset[0]
row = np.array(graph.edge_index[0])
col = np.array(graph.edge_index[1])
data1 = np.ones((graph.edge_index.shape[1], ))
adj = sp.csr_matrix((data1, (row, col)), shape=(graph.num_nodes, graph.num_nodes), dtype=np.int32) #test
adj_orig = adj
adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
adj_orig.eliminate_zeros()
adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj)
adj = adj_train
features = graph.x
if args.features == 0: #no feartures
features = tlx.eye(graph.num_nodes, graph.num_nodes) # featureless
# Some preprocessing
adj_label = adj_train + sp.eye(adj_train.shape[0])
adj_label = tlx.convert_to_tensor(adj_label.toarray(), tlx.float32) #test
pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
pos_weight_tensor = tlx.convert_to_tensor(pos_weight * np.ones((1, adj.shape[0])), tlx.float32)
coords = sparse_to_tuple(adj)[0].T
coords = tlx.convert_to_tensor(coords, tlx.int64)
edge_index, _ = add_self_loops(coords, num_nodes=graph.num_nodes, n_loops=args.self_loops)
edge_weight = tlx.convert_to_tensor(calc_gcn_norm(edge_index, graph.num_nodes))
# for mindspore, it should be passed into node indices
train_idx = mask_to_index(graph.train_mask)
test_idx = mask_to_index(graph.test_mask)
val_idx = mask_to_index(graph.val_mask)
if args.model == 'VGAE':
net = VGAEModel(feature_dim=features.shape[1], hidden1_dim=args.hidden1_dim, hidden2_dim=args.hidden2_dim,
drop_rate=args.drop_rate, num_layers=args.num_layers, norm=args.norm, name="VGAE")
else:
net = GAEModel(feature_dim=features.shape[1], hidden1_dim=args.hidden1_dim, hidden2_dim=args.hidden2_dim,
drop_rate=args.drop_rate, num_layers=args.num_layers, norm=args.norm, name="GAE")
optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.l2_coef)
#metrics = tlx.metrics.Auc()
train_weights = net.trainable_weights
if args.model == 'VGAE':
loss = get_loss_vgae
else:
loss = get_loss_gae
loss_func = SemiSpvzLoss(net, loss)
#loss_func = SemiSpvzLoss(model, tlx.losses.binary_cross_entropy) #test
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
data = {
"x": features,
"y": graph.y,
"edge_index": edge_index,
"edge_weight": edge_weight,
"train_idx": train_idx,
"test_idx": test_idx,
"val_idx": val_idx,
"num_nodes": graph.num_nodes,
"labels": adj_label,
"pos_weight": pos_weight_tensor,
"norm": norm
}
best_val_ap = 0
hidden_emb = None
for epoch in range(args.n_epoch):
net.set_train()
train_loss = train_one_step(data, graph.y)
net.set_eval()
mu = net(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])[1]
hidden_emb = tlx.convert_to_numpy(mu)
roc_curr, ap_curr = get_roc_score(hidden_emb, adj_orig, val_edges, val_edges_false)
print("Epoch [{:0>3d}] ".format(epoch + 1) \
+ " train loss: {:.4f}".format(train_loss.item()) \
+ " val ap: {:.4f}".format(ap_curr))
# save best model on evaluation set
if ap_curr > best_val_ap:
best_val_ap = ap_curr
net.save_weights(args.best_model_path + net.name + ".npz", format='npz_dict')
net.load_weights(args.best_model_path + net.name + ".npz", format='npz_dict')
if tlx.BACKEND == 'torch':
net.to(data['x'].device)
net.set_eval()
mu = net(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])[1]
hidden_emb = tlx.convert_to_numpy(mu)
roc_curr, ap_curr = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false)
print("Test AUC score: {:.4f}".format(roc_curr))
print("Test AP score: {:.4f}".format(ap_curr))
if __name__ == '__main__':
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.01, help="learnin rate")
parser.add_argument("--n_epoch", type=int, default=200, help="number of epoch")
parser.add_argument("--hidden1_dim", type=int, default=32, help="dimention of hidden layers1")
parser.add_argument("--hidden2_dim", type=int, default=16, help="dimention of hidden layers2")
parser.add_argument("--drop_rate", type=float, default=0., help="drop_rate")
parser.add_argument("--num_layers", type=int, default=2, help="number of layers")
parser.add_argument("--norm", type=str, default='none', help="how to apply the normalizer.")
parser.add_argument("--l2_coef", type=float, default=0., help="l2 loss coeficient") #5e-4
parser.add_argument('--dataset', type=str, default='cora', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--self_loops", type=int, default=1, help="number of graph self-loop")
parser.add_argument("--features", type=int, default=1, help="Whether to use features (1) or not (0)")
parser.add_argument("--model", type=str, default='VGAE', help="Model string")
parser.add_argument("--gpu", type=int, default=0)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)