In next table, AdvancedParams
is replaced with adp
, and the rule of name change is to unify with Fooocus.
Fooocus-API | FooocusAPI | 备注 |
---|---|---|
prompt | prompt | |
negative_prompt | negative_prompt | |
style_selections | style_selections | |
performance_selection | performance_selection | |
aspect_ratios_selection | aspect_ratios_selection | |
image_number | image_number | |
image_seed | image_seed | |
sharpness | sharpness | |
guidance_scale | guidance_scale | |
base_model_name | base_model_name | |
refiner_model_name | refiner_model_name | |
refiner_switch | refiner_switch | |
loras | loras | same, a list of lora obj |
input_image_checkbox | this is always true | |
current_tab | need not care this | |
uov_method | uov_method | |
input_image | uov_input_image | use variable name in Fooocus |
outpaint_selections | outpaint_selections | |
input_image | inpaint_input_image | use variable name in Fooocus |
inpaint_additional_prompt | inpaint_additional_prompt | |
input_mask | inpaint_mask_image_upload | use variable name in Fooocus |
adp.disable_preview | disable_preview | |
adp.disable_intermediate_results | disable_intermediate_results | |
adp.disable_seed_increment | disable_seed_increment | |
adp.black_out_nsfw | black_out_nsfw | |
adp.adm_scaler_positive | adm_scaler_positive | |
adp.adm_scaler_negative | adm_scaler_negative | |
adp.adm_scaler_end | adm_scaler_end | |
adp.adaptive_cfg | adaptive_cfg | |
adp.clip_skip | clip_skip | |
adp.sampler_name | sampler_name | |
adp.scheduler_name | scheduler_name | |
adp.vae_name | vae_name | |
adp.overwrite_step | overwrite_step | |
adp.overwrite_switch | overwrite_switch | |
adp.overwrite_width | overwrite_width | |
adp.overwrite_height | overwrite_height | |
adp.overwrite_vary_strength | overwrite_vary_strength | |
adp.overwrite_upscale_strength | overwrite_upscale_strength | |
adp.mixing_image_prompt_and_vary_upscale | mixing_image_prompt_and_vary_upscale | |
adp.mixing_image_prompt_and_inpaint | mixing_image_prompt_and_inpaint | |
adp.debugging_cn_preprocessor | debugging_cn_preprocessor | |
adp.skipping_cn_preprocessor | skipping_cn_preprocessor | |
adp.canny_low_threshold | canny_low_threshold | |
adp.canny_high_threshold | canny_high_threshold | |
adp.refiner_swap_method | refiner_swap_method | |
adp.controlnet_softness | controlnet_softness | |
adp.freeu_enabled | freeu_enabled | |
adp.freeu_b1 | freeu_b1 | |
adp.freeu_b2 | freeu_b2 | |
adp.freeu_s1 | freeu_s1 | |
adp.freeu_s2 | freeu_s2 | |
adp.debugging_inpaint_preprocessor | debugging_inpaint_preprocessor | |
adp.inpaint_disable_initial_latent | inpaint_disable_initial_latent | |
adp.inpaint_engine | inpaint_engine | |
adp.inpaint_strength | inpaint_strength | |
adp.inpaint_respective_field | inpaint_respective_field | |
adp.inpaint_mask_upload_checkbox | inpaint_mask_upload_checkbox | |
adp.invert_mask_checkbox | invert_mask_checkbox | |
adp.inpaint_erode_or_dilate | inpaint_erode_or_dilate | |
image_prompts | controlnet_image | just change name |
generate_image_grid | new, default is better | |
outpaint_distance_left | outpaint_distance | merge these to one |
outpaint_distance_right | use a list to pass these four | |
outpaint_distance_top | exp: [100, 50, 0, 0] | |
outpaint_distance_bottom | Directions are: left, up, right, down | |
upscale_value | upscale_multiple | name change only |
preset | new, use this this specified preset | |
stream_output | new, similar to LLM streaming output | |
save_meta | save_metadata_to_images | name change only |
meta_scheme | metadata_scheme | name change only |
save_extension | output_format | name change only |
save_name | remove | |
read_wildcards_in_order | read_wildcards_in_order | |
require_base64 | require_base64 | will be remove |
async_process | async_process | |
webhook_url | webhook_url |
simple is:
- All
AdvancedParams
move to upper level - Modify some params name
input_image
->inpaint_input_image
inpaint_mask
->inpaint_mask_image_upload
input_image
->uov_input_image
image_prompts
->controlnet_image
upscale_value
->upscale_value
save_meta
->upscale_multiple
meta_scheme
->save_metadata_to_images
save_extension
->output_format
- Remove some params
save_name
- Add some params
input_image_checkbox
current_tab
generate_image_grid
preset
stream_output
- Merge some params
outpaint_distance_left,right,top,bottom
四个参数合并为outpaint_distance
specify async_process
as True
import requests
import json
endpoint = "http://127.0.0.1:7866/v1/engine/generate/"
params = {
"prompt": "",
"negative_prompt": "",
"performance_selection": "Lightning",
"async_process": True,
"webhook_url": ""
}
res = requests.post(
url=endpoint,
data=json.dumps(params),
timeout=60
)
print(res.json())
output will be like this:
{'id': -1, 'task_id': '85c10c81e9e2482d90a64c3704137d3a', 'req_params': {}, 'in_queue_mills': -1, 'start_mills': -1, 'finish_mills': -1, 'task_status': 'pending', 'progress': -1, 'preview': '', 'webhook_url': '', 'result': []}
use task_id
request http://127.0.0.1:7866/tasks/{task_id}
to get task info, if this task is currently running, return should be include preview
example for return
# pending
{
"id": -1,
"in_queue_mills": 1720085748199,
"finish_mills": null,
"progress": null,
"result": null,
"req_params": {
# full request params
...
},
"task_id": "85c10c81e9e2482d90a64c3704137d3a",
"start_mills": null,
"task_status": null,
"webhook_url": ""
}
# running
{
"id": -1,
"task_id": "85c10c81e9e2482d90a64c3704137d3a",
"req_params": {
...
},
"in_queue_mills": 1720086131653,
"start_mills": 1720086131865,
"finish_mills": -1,
"task_status": "running",
"progress": 18,
"preview": "a long text",
"webhook_url": "",
"result": []
}
# finished
{
"id": 71,
"in_queue_mills": 1720085748199,
"finish_mills": 1720085770046,
"progress": 100,
"result": [
"http://127.0.0.1:7866/outputs/2024-07-04/2024-07-04_17-36-09_5201.png"
],
"req_params": {
...
},
"task_id": "85c10c81e9e2482d90a64c3704137d3a",
"start_mills": 1720085748425,
"task_status": "finished",
"webhook_url": ""
}
this is like LLM streaming output, you will recieve from server until finish, refer to the above example:
import requests
import json
endpoint = "http://127.0.0.1:7866/v1/engine/generate/"
params = {
"prompt": "",
"negative_prompt": "",
"performance_selection": "Lightning",
"stream_output": True,
"webhook_url": ""
}
res = requests.post(
url=endpoint,
data=json.dumps(params),
stream=True,
timeout=60
)
for line in res.iter_lines():
if line:
print(line.decode('utf-8'))
you will get response like this:
data: {"progress": 2, "preview": null, "message": "Loading models ...", "images": []}
data:
data: {"progress": 13, "preview": null, "message": "Preparing task 1/1 ...", "images": []}
data:
data: {"progress": 13, "preview": "...", 'message': 'Sampling step 1/4, image 1/1 ...', 'images': []}
data:
data: {"progress": 34, "preview": "...", 'message': 'Sampling step 2/4, image 1/1 ...', 'images': []}
data:
data: {"progress": 56, "preview": "...", 'message': 'Sampling step 3/4, image 1/1 ...', 'images': []}
data:
data: {"progress": 78, "preview": "...", 'message': 'Sampling step 4/4, image 1/1 ...', 'images': []}
data:
data: {"progress": 100, "preview": null, "message": "Saving image 1/1 to system ...", "images": []}
data:
data: {"progress": 100, "preview": null, "message": "Finished", "images": ["http://10.0.0.245:7866/outputs/2024-07-05/2024-07-05_09-31-10_1752.png"]}
data:
just modify our code:
import requests
import json
endpoint = "http://127.0.0.1:7866/v1/engine/generate/"
params = {
"prompt": "",
"negative_prompt": "",
"performance_selection": "Lightning",
"stream_output": True,
"webhook_url": ""
}
res = requests.post(
url=endpoint,
data=json.dumps(params),
stream=True,
timeout=60
)
for line in res.iter_lines(chunk_size=8192):
line = line.decode('utf-8').split('\n')[0]
try:
json_data = json.loads(line[6:])
if json_data["preview"] is not None:
json_data["preview"] = "..."
except json.decoder.JSONDecodeError:
continue
print(json_data)
you will get this:
{'progress': 13, 'preview': None, 'message': 'Preparing task 1/1 ...', 'images': []}
{'progress': 13, 'preview': '...', 'message': 'Sampling step 1/4, image 1/1 ...', 'images': []}
{'progress': 34, 'preview': '...', 'message': 'Sampling step 2/4, image 1/1 ...', 'images': []}
{'progress': 56, 'preview': '...', 'message': 'Sampling step 3/4, image 1/1 ...', 'images': []}
{'progress': 78, 'preview': '...', 'message': 'Sampling step 4/4, image 1/1 ...', 'images': []}
{'progress': 100, 'preview': None, 'message': 'Saving image 1/1 to system ...', 'images': []}
{'progress': 100, 'preview': None, 'message': 'Finished', 'images': ['http://10.0.0.245:7866/outputs/2024-07-05/2024-07-05_10-02-22_2536.png']}
it is better for frontend i think (but i am not good at this). with AI, i generate a example.html, click Generate
button, you will get a page with preview and progress.
this is simple, return is a image, pass async_process
and stream_output
both false
, at this time, image_number
force to 1
import requests
import json
from PIL import Image
from io import BytesIO
import matplotlib.pyplot as plt
endpoint = "http://127.0.0.1:7866/v1/engine/generate/"
params = {
"prompt": "",
"negative_prompt": "",
"performance_selection": "Lightning",
"async_process": False,
"stream_output": False,
"webhook_url": ""
}
res = requests.post(
url=endpoint,
data=json.dumps(params),
timeout=60
)
image_stream = BytesIO(res.content)
image = Image.open(image_stream)
plt.imshow(image)
plt.show()
Unlike Fooocus-API, the history saving will be automatic without a retention switch. The database is used with SQLite3 and stored in outputs/db.sqlite3
. Taking lessons from the previous version, the table structure has been greatly simplified, and request parameters are stored as JSON in the req_params
field. To reduce read and write operations, database operations are only performed when tasks enter and complete the queue. It is only used for generating records, and task status tracking is completed in memory.
In addition, this version will retain input images, uploaded images will calculate hash values and be saved in the inputs
directory, and the image parameters in the database's req_params
will be replaced with url
information for saving, which means more complete historical record preservation, whether it is text-to-image or image-to-image or other types of images.
This is a compound interface, but its return format is fixed. The interface will always return JSON data in the following format, regardless of how the parameters are specified.
{
"history": [],
"current": [], # Although it is a list, there will be no more than one element in it.
"pending": []
}
All elements have a format that matches the scheme in the database, except for current which has an additional preview, as shown in the following figure:
more usage, see below:
The return format of this interface is always fixed, regardless of how the parameters are adjusted.
curl http://localhost:7866/tasks?query=current
# only return current task, other value for query include 'all', 'pending', 'history'
curl http://localhost:7866/tasks?query=history&page=3&page_size=5
# history and pending supports pagination and page size.
curl http://localhost:7866/tasks?query=history&start_at=2024-07-03T12:22:30
# You can specify a time range for the query, which will return all records within that time period. The time format is ISO8601, and if you do not specify end_at, it will be set to the current time.
curl http://localhost:7866/tasks?query=history&start_at=2024-07-03T12:22:30&action=delete
# Delete tasks within a specified time range, including database records and generated files. This is the only supported deletion method at present (input files will not be deleted).
curl http://localhost:7866/tasks/38ba92b188a64233a7336218cd902865
# This will return the information of the task, but it is just a dictionary. It is equivalent to taking the task with the specified task_id from the list above. If it happens to be the current task, it will also include preview. (Although it may look similar, this is actually another interface.)