-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
64 lines (48 loc) · 1.77 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import os
from glob import glob
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import ImageFolder
from PIL import Image
def load_data_list(data_dir):
path = os.path.join(data_dir, '', '*')
file_list = glob(path)
return file_list
class ConcatDataset(torch.utils.data.Dataset):
def __init__(self, *datasets):
self.datasets = datasets
def __getitem__(self, i):
return tuple(d[i] for d in self.datasets)
def __len__(self):
return min(len(d) for d in self.datasets)
def return_loader(crop_size, image_size, batch_size, mode='train'):
"""Return data loader."""
if mode == 'train':
transform = transforms.Compose([
transforms.CenterCrop(crop_size),
transforms.Scale(image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
else:
transform = transforms.Compose([
transforms.CenterCrop(crop_size),
transforms.Scale(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
shuffle = False
if mode == 'train':
shuffle = True
#Path to image folders of expression classes for both image and landmark heatmap
traindir_img='/data/train_face_data/image/'
traindir_heatmap='/data/train_face_data/landmark/'
data_loader =DataLoader(
dataset=ConcatDataset(
ImageFolder(traindir_img,transform),
ImageFolder(traindir_heatmap,transform)
),
batch_size=batch_size, shuffle=shuffle)
return data_loader