-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvenous_app.py
710 lines (631 loc) · 31.1 KB
/
venous_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import sys
import qrc_resources
from functools import partial
from PyQt5.QtWidgets import *
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QPixmap, QFont, QIcon
from PyQt5 import QtCore, QtGui, QtWidgets
import matplotlib.pyplot as plt
from pylab import gray, imshow, show
from matplotlib.widgets import Slider, Button
from skimage.io import imread, imshow
from PIL import Image, ImageChops
from skimage import data, io, color, feature, filters, morphology
from skimage.filters import gabor_kernel
from scipy.ndimage import convolve
import cv2
import numpy as np
from itertools import product
from scipy.stats import describe
import skimage.morphology
import math
class MinutiaeFeature(object):
def __init__(self, locX, locY, Orientation, Type):
self.locX = locX
self.locY = locY
self.Orientation = Orientation
self.Type = Type
class FingerprintFeatureExtractor(object):
def __init__(self):
self._mask = []
self._skel = []
self.minutiaeTerm = []
self.minutiaeBif = []
self._spuriousMinutiaeThresh = 10
def setSpuriousMinutiaeThresh(self, spuriousMinutiaeThresh):
self._spuriousMinutiaeThresh = spuriousMinutiaeThresh
def __skeletonize(self, img):
img = np.uint8(img > 128)
self._skel = skimage.morphology.skeletonize(img)
self._skel = np.uint8(self._skel) * 255
self._mask = img * 255
def __computeAngle(self, block, minutiaeType):
angle = []
(blkRows, blkCols) = np.shape(block)
CenterX, CenterY = (blkRows - 1) / 2, (blkCols - 1) / 2
if (minutiaeType.lower() == 'termination'):
sumVal = 0
for i in range(blkRows):
for j in range(blkCols):
if ((i == 0 or i == blkRows - 1 or j == 0 or j == blkCols - 1) and block[i][j] != 0):
angle.append(-math.degrees(math.atan2(i - CenterY, j - CenterX)))
sumVal += 1
if (sumVal > 1):
angle.append(float('nan'))
return (angle)
elif (minutiaeType.lower() == 'bifurcation'):
(blkRows, blkCols) = np.shape(block)
CenterX, CenterY = (blkRows - 1) / 2, (blkCols - 1) / 2
angle = []
sumVal = 0
for i in range(blkRows):
for j in range(blkCols):
if ((i == 0 or i == blkRows - 1 or j == 0 or j == blkCols - 1) and block[i][j] != 0):
angle.append(-math.degrees(math.atan2(i - CenterY, j - CenterX)))
sumVal += 1
if (sumVal != 3):
angle.append(float('nan'))
return (angle)
def __getTerminationBifurcation(self):
self._skel = self._skel == 255
(rows, cols) = self._skel.shape
self.minutiaeTerm = np.zeros(self._skel.shape)
self.minutiaeBif = np.zeros(self._skel.shape)
for i in range(1, rows - 1):
for j in range(1, cols - 1):
if (self._skel[i][j] == 1):
block = self._skel[i - 1:i + 2, j - 1:j + 2]
block_val = np.sum(block)
if (block_val == 2):
self.minutiaeTerm[i, j] = 1
elif (block_val == 4):
self.minutiaeBif[i, j] = 1
self._mask = skimage.morphology.convex_hull_image(self._mask > 0)
self._mask = skimage.morphology.erosion(self._mask, skimage.morphology.square(5))
self.minutiaeTerm = np.uint8(self._mask) * self.minutiaeTerm
def __removeSpuriousMinutiae(self, minutiaeList, img):
img = img * 0
SpuriousMin = []
numPoints = len(minutiaeList)
D = np.zeros((numPoints, numPoints))
for i in range(1,numPoints):
for j in range(0, i):
(X1,Y1) = minutiaeList[i]['centroid']
(X2,Y2) = minutiaeList[j]['centroid']
dist = np.sqrt((X2-X1)**2 + (Y2-Y1)**2)
D[i][j] = dist
if(dist < self._spuriousMinutiaeThresh):
SpuriousMin.append(i)
SpuriousMin.append(j)
SpuriousMin = np.unique(SpuriousMin)
for i in range(0,numPoints):
if(not i in SpuriousMin):
(X,Y) = np.int16(minutiaeList[i]['centroid'])
img[X,Y] = 1
img = np.uint8(img)
return(img)
def __cleanMinutiae(self, img):
self.minutiaeTerm = skimage.measure.label(self.minutiaeTerm, connectivity=2)
RP = skimage.measure.regionprops(self.minutiaeTerm)
self.minutiaeTerm = self.__removeSpuriousMinutiae(RP, np.uint8(img))
def __performFeatureExtraction(self):
FeaturesTerm = []
self.minutiaeTerm = skimage.measure.label(self.minutiaeTerm, connectivity=2)
RP = skimage.measure.regionprops(np.uint8(self.minutiaeTerm))
WindowSize = 2 # --> For Termination, the block size must can be 3x3, or 5x5. Hence the window selected is 1 or 2
FeaturesTerm = []
for num, i in enumerate(RP):
(row, col) = np.int16(np.round(i['Centroid']))
block = self._skel[row - WindowSize:row + WindowSize + 1, col - WindowSize:col + WindowSize + 1]
angle = self.__computeAngle(block, 'Termination')
if(len(angle) == 1):
FeaturesTerm.append(MinutiaeFeature(row, col, angle, 'Termination'))
FeaturesBif = []
self.minutiaeBif = skimage.measure.label(self.minutiaeBif, connectivity=2)
RP = skimage.measure.regionprops(np.uint8(self.minutiaeBif))
WindowSize = 1 # --> For Bifurcation, the block size must be 3x3. Hence the window selected is 1
for i in RP:
(row, col) = np.int16(np.round(i['Centroid']))
block = self._skel[row - WindowSize:row + WindowSize + 1, col - WindowSize:col + WindowSize + 1]
angle = self.__computeAngle(block, 'Bifurcation')
if(len(angle) == 3):
FeaturesBif.append(MinutiaeFeature(row, col, angle, 'Bifurcation'))
return (FeaturesTerm, FeaturesBif)
def extractMinutiaeFeatures(self, img):
self.__skeletonize(img)
self.__getTerminationBifurcation()
FeaturesTerm, FeaturesBif = self.__performFeatureExtraction()
return (FeaturesTerm, FeaturesBif)
def showResults(self, FeaturesTerm, FeaturesBif):
(rows, cols) = self._skel.shape
disp_img = np.zeros((rows, cols, 3), np.uint8)
disp_img[:, :, 0] = 255 * self._skel
disp_img[:, :, 1] = 255 * self._skel
disp_img[:, :, 2] = 255 * self._skel
for idx, curr_minutiae in enumerate(FeaturesTerm):
row, col = curr_minutiae.locX, curr_minutiae.locY
(rr, cc) = skimage.draw.circle_perimeter(row, col, 3)
skimage.draw.set_color(disp_img, (rr, cc), (0, 0, 255))
for idx, curr_minutiae in enumerate(FeaturesBif):
row, col = curr_minutiae.locX, curr_minutiae.locY
(rr, cc) = skimage.draw.circle_perimeter(row, col, 3)
skimage.draw.set_color(disp_img, (rr, cc), (255, 0, 0))
cv2.imshow('output', disp_img)
cv2.waitKey(0)
def saveResult(self, FeaturesTerm, FeaturesBif):
(rows, cols) = self._skel.shape
disp_img = np.zeros((rows, cols, 3), np.uint8)
disp_img[:, :, 0] = 255 * self._skel
disp_img[:, :, 1] = 255 * self._skel
disp_img[:, :, 2] = 255 * self._skel
for idx, curr_minutiae in enumerate(FeaturesTerm):
row, col = curr_minutiae.locX, curr_minutiae.locY
(rr, cc) = skimage.draw.circle_perimeter(row, col, 3)
skimage.draw.set_color(disp_img, (rr, cc), (0, 0, 255))
for idx, curr_minutiae in enumerate(FeaturesBif):
row, col = curr_minutiae.locX, curr_minutiae.locY
(rr, cc) = skimage.draw.circle_perimeter(row, col, 3)
skimage.draw.set_color(disp_img, (rr, cc), (255, 0, 0))
output_image_path = 'result.png'
cv2.imwrite(output_image_path, disp_img)
return output_image_path
def extract_minutiae_features(img, spuriousMinutiaeThresh=10, invertImage=False, showResult=False, saveResult=False):
feature_extractor = FingerprintFeatureExtractor()
feature_extractor.setSpuriousMinutiaeThresh(spuriousMinutiaeThresh)
if (invertImage):
img = 255 - img;
FeaturesTerm, FeaturesBif = feature_extractor.extractMinutiaeFeatures(img)
if (saveResult):
output_image_path = feature_extractor.saveResult(FeaturesTerm, FeaturesBif)
if (showResult):
feature_extractor.showResults(FeaturesTerm, FeaturesBif)
return output_image_path, (FeaturesTerm, FeaturesBif)
def extract_minutiaecido(image_path):
img = cv2.imread(image_path)
# Convertir l'image en niveau de gris
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Réduction du bruit sur l'image en niveau de gris (debruitage par moyenne non locale)
noiseReduced = cv2.fastNlMeansDenoising(gray, None, h=10, templateWindowSize=7, searchWindowSize=21)
# Egalisation d'histogramme avec CLAHE
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(8, 8))
finalImg = clahe.apply(noiseReduced)
# Filtrage de Gabor
ksize, psi, gamma, sigma, lambd = 35, 0, .5, 5, 15
theta_list = np.deg2rad([18, 36, 54, 72, 90, 108, 126, 144, 162, 180])
K = len(theta_list)
filters = []
for theta in theta_list:
kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, lambd, gamma, psi, ktype=cv2.CV_32F)
kernel /= 1.5 * kernel.sum()
filters.append(kernel)
filtered_images = []
for kernel in filters:
filtered = cv2.filter2D(finalImg, cv2.CV_8UC3, kernel)
filtered_images.append(filtered)
fused_image = np.minimum.reduce(filtered_images)
fused_image = cv2.cvtColor(fused_image, cv2.COLOR_GRAY2BGR)
# Sommation de l'image initiale et de l'image filtrée
img_weighted = cv2.addWeighted(img, 0.3, fused_image, 0.7, 0)
img_weighted = cv2.cvtColor(img_weighted, cv2.COLOR_BGR2GRAY)
# Segmentation par seuillage adaptatif
thresholded = cv2.adaptiveThreshold(img_weighted, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 35, 4)
# Réduction du bruit après segmentation
noiseReduced = cv2.fastNlMeansDenoising(thresholded, None, h=20, templateWindowSize=5, searchWindowSize=20)
# Egalisation d'histogramme après seuillage
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(9, 9))
finalImg = clahe.apply(noiseReduced)
# Définir le noyau pour l'érosion
kernel = np.ones((5, 5), np.uint8)
# Appliquer l'érosion à l'image
erosion = cv2.erode(finalImg, kernel, iterations=1)
# Appliquer l'algorithme de squelettisation de Zhang-Suen
skeleton = cv2.ximgproc.thinning(erosion, cv2.ximgproc.THINNING_ZHANGSUEN)
# Afficher l'image avec les minuties
output_image_path, (FeaturesTerm, FeaturesBif) = extract_minutiae_features(
skeleton, # Charger l'image
spuriousMinutiaeThresh=10, # Valeur seuil pour les minuties superflues
invertImage=False, # Inverser ou non les valeurs des pixels de l'image
showResult=False, # Afficher ou non l'image avec les minuties
saveResult=True # Enregistrer ou non l'image avec les minuties
)
return output_image_path
def extract_minutiaepathimage1(img_path1):
img1 = cv2.imread(img_path1)
gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
noiseReduced1 = cv2.fastNlMeansDenoising(gray, None, h=10, templateWindowSize=7, searchWindowSize=21)
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(8, 8))
finalImg1 = clahe.apply(noiseReduced1)
ksize, psi, gamma, sigma, lambd = 35, 0, .5, 5, 15
theta_list = np.deg2rad([18, 36, 54, 72, 90, 108, 126, 144, 162, 180])
K = len(theta_list)
filters = []
for theta in theta_list:
kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, lambd, gamma, psi, ktype=cv2.CV_32F)
kernel /= 1.5 * kernel.sum()
filters.append(kernel)
filtered_images = []
for kernel in filters:
filtered = cv2.filter2D(finalImg1, cv2.CV_8UC3, kernel)
filtered_images.append(filtered)
fused_image = np.minimum.reduce(filtered_images)
fused_image = cv2.cvtColor(fused_image, cv2.COLOR_GRAY2BGR)
img_weighted = cv2.addWeighted(img1, 0.3, fused_image, 0.7, 0)
img_weighted = cv2.cvtColor(img_weighted, cv2.COLOR_BGR2GRAY)
thresholded = cv2.adaptiveThreshold(img_weighted, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 35, 4)
noiseReduced = cv2.fastNlMeansDenoising(thresholded, None, h=20, templateWindowSize=5, searchWindowSize=20)
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(9, 9))
finalImg = clahe.apply(noiseReduced)
skeleton = cv2.ximgproc.thinning(finalImg, cv2.ximgproc.THINNING_ZHANGSUEN)
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(img_weighted, mask=None)
print("Nombre de minuties detectées (image 1)", len(kp1))
print("Matrice de description (image 1)", des1)
return kp1, des1
def extract_minutiaepathimage2(img_path2):
img2 = cv2.imread(img_path2)
gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
noiseReduced1 = cv2.fastNlMeansDenoising(gray, None, h=10, templateWindowSize=7, searchWindowSize=21)
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(8, 8))
finalImg1 = clahe.apply(noiseReduced1)
ksize, psi, gamma, sigma, lambd = 35, 0, .5, 5, 15
theta_list = np.deg2rad([18, 36, 54, 72, 90, 108, 126, 144, 162, 180])
K = len(theta_list)
filters = []
for theta in theta_list:
kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, lambd, gamma, psi, ktype=cv2.CV_32F)
kernel /= 1.5 * kernel.sum()
filters.append(kernel)
filtered_images = []
for kernel in filters:
filtered = cv2.filter2D(finalImg1, cv2.CV_8UC3, kernel)
filtered_images.append(filtered)
fused_image = np.minimum.reduce(filtered_images)
fused_image = cv2.cvtColor(fused_image, cv2.COLOR_GRAY2BGR)
img_weighted = cv2.addWeighted(img2, 0.3, fused_image, 0.7, 0)
img_weighted = cv2.cvtColor(img_weighted, cv2.COLOR_BGR2GRAY)
thresholded = cv2.adaptiveThreshold(img_weighted, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 35, 4)
noiseReduced = cv2.fastNlMeansDenoising(thresholded, None, h=20, templateWindowSize=5, searchWindowSize=20)
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(9, 9))
finalImg = clahe.apply(noiseReduced)
skeleton = cv2.ximgproc.thinning(finalImg, cv2.ximgproc.THINNING_ZHANGSUEN)
sift = cv2.SIFT_create()
kp2, des2 = sift.detectAndCompute(img_weighted, mask=None)
print("Nombre de minuties detectées (image 2):", len(kp2))
print("Matrice de description (image 2)", des2)
return kp2, des2
def extract_minutiae(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
noiseReduced1 = cv2.fastNlMeansDenoising(gray, None, h=10, templateWindowSize=7, searchWindowSize=21)
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(8, 8))
finalImg1 = clahe.apply(noiseReduced1)
ksize = 35
psi = 0
gamma = 0.5
sigma = 5
theta_list = np.deg2rad([18, 36, 54, 72, 90, 108, 126, 144, 162, 180])
lambd = 15
K = len(theta_list)
filters = []
for theta in theta_list:
kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, lambd, gamma, psi, ktype=cv2.CV_32F)
kernel /= 1.5 * kernel.sum()
filters.append(kernel)
filtered_images = []
for kernel in filters:
filtered = cv2.filter2D(finalImg1, cv2.CV_8UC3, kernel)
filtered_images.append(filtered)
fused_image = np.minimum.reduce(filtered_images)
fused_image = cv2.cvtColor(fused_image, cv2.COLOR_GRAY2BGR)
img_weighted = cv2.addWeighted(img, 0.3, fused_image, 0.7, 0)
img_weighted = cv2.cvtColor(img_weighted, cv2.COLOR_BGR2GRAY)
thresholded = cv2.adaptiveThreshold(img_weighted, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 35, 4)
noiseReduced = cv2.fastNlMeansDenoising(thresholded, None, h=20, templateWindowSize=5, searchWindowSize=20)
clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(9, 9))
finalImg = clahe.apply(noiseReduced)
skeleton = cv2.ximgproc.thinning(finalImg, cv2.ximgproc.THINNING_ZHANGSUEN)
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(img_weighted, mask=None)
return des1
def match_descriptors(des1, des2):
nb_points_interet = min(len(des1), len(des2))
flann = cv2.FlannBasedMatcher()
matches = flann.knnMatch(des1, des2, k=2)
good_matches = []
for m, n in matches:
if m.distance < 0.88 * n.distance:
good_matches.append(m)
taux_correspondance = len(good_matches) / nb_points_interet
taux_correspondance = taux_correspondance * 100
taux_correspondance = int(taux_correspondance)
return taux_correspondance
def match_images(img_path1, img_path2):
img1 = cv2.imread(img_path1)
img2 = cv2.imread(img_path2)
des1 = extract_minutiae(img1)
des2 = extract_minutiae(img2)
taux_correspondance = match_descriptors(des1, des2)
return taux_correspondance
class Window(QMainWindow):
def __init__(self, parent=None):
super().__init__(parent)
self.setWindowTitle("Application d'opérations sur les empreintes veineuses")
self.resize(500, 700)
self.center_on_screen()
label = QLabel(self)
pixmap = QPixmap("images/les_veines_de_la_main.jpg")
# pixmap = pixmap.scaled(500, 700)
pixmap = pixmap.scaledToWidth(self.width())
label.setPixmap(pixmap)
self.setCentralWidget(label)
# self.resize(pixmap.width(), pixmap.height())
centralWidget = QLabel("Hello, World")
centralWidget.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
# self.setCentralWidget(centralWidget)
text_label = QLabel("Vein Recogniton System", self)
text_label.setFont(QFont("Georgia", 32, weight = 50, italic = True))
text_label.setStyleSheet("color: black")
text_label.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
# self.setCentralWidget(text_label)
text_label.move(8, 60)
text_label.adjustSize()
sub_text_label = QLabel("A minutiae-based approach", self)
sub_text_label.setFont(QFont("Georgia", 11, weight = 50, italic = True))
sub_text_label.setStyleSheet("color: black")
sub_text_label.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
sub_text_label.move(300, 118)
sub_text_label.adjustSize()
self._createActions()
self._createMenuBar()
self._connectActions()
self._createStatusBar()
def _createActions(self):
self.newAction = QAction("&New", self)
new_action_tip = "Create a new file"
self.newAction.setStatusTip(new_action_tip)
self.newAction.setToolTip(new_action_tip)
self.openAction = QAction("&Open", self)
openAction_tip = "Open action tip."
self.openAction.setStatusTip(openAction_tip)
self.openAction.setToolTip(openAction_tip)
self.load_image = QAction(QIcon(":upload.svg"), "&Charger une image", self)
load_image_tip = "Charger une image depuis le stockage local."
self.load_image.setStatusTip(load_image_tip)
self.load_image.setToolTip(load_image_tip)
self.minutia = QAction(QIcon(":features.svg"), "&Extraction de minuties", self)
minutia_tip = "Minutia tip."
self.minutia.setStatusTip(minutia_tip)
self.minutia.setToolTip(minutia_tip)
self.comparison = QAction(QIcon(":comparison-3.svg"), "&Comparaison", self)
comparison_tip = "Comparison tip."
self.comparison.setStatusTip(comparison_tip)
self.comparison.setToolTip(comparison_tip)
self.roc = QAction(QIcon(":curve.svg"), "&Courbe ROC", self)
roc_tip = "Tracer la courbe ROC"
self.roc.setStatusTip(roc_tip)
self.roc.setToolTip(roc_tip)
self.exit_action = QAction("&Fermer", self)
exit_tip = "Fermer l'application."
self.exit_action.setStatusTip(exit_tip)
self.exit_action.setToolTip(exit_tip)
self.help_action = QAction(QIcon(":about-1.svg"), "&Aide", self)
help_tip = "Accéder à l'aide."
self.help_action.setStatusTip(help_tip)
self.help_action.setToolTip(help_tip)
self.about_action = QAction(QIcon(":about.svg"), "&A propos", self)
about_tip = "A propos de l'application."
self.about_action.setStatusTip(about_tip)
self.about_action.setToolTip(about_tip)
def _connectActions(self):
# Connect File actions
self.newAction.triggered.connect(self.newFile)
self.openAction.triggered.connect(self.showDialog)
self.load_image.triggered.connect(self.LoadImage)
self.minutia.triggered.connect(self.Minutia)
self.exit_action.triggered.connect(self.close)
self.comparison.triggered.connect(self.Comparison)
self.roc.triggered.connect(self.ROCCurve)
self.help_action.triggered.connect(self.helpContent)
self.about_action.triggered.connect(self.about)
def showDialog(self):
dialog = QDialog()
b1 = QPushButton("ok", dialog)
b1.move(50,50)
dialog.setWindowTitle("Dialog")
dialog.setWindowModality(Qt.ApplicationModal)
dialog.exec_()
def LoadImage(self):
file_dialog = QFileDialog(self)
file_dialog.setNameFilter("Images (*.png *.jpg *.jpeg *.bmp)")
file_dialog.setFileMode(QFileDialog.ExistingFiles)
if file_dialog.exec_():
selected_files = file_dialog.selectedFiles()
print(f"Selected Images: {selected_files}")
def newFile(self):
self.centralWidget.setText("<b>File > New</b> clicked")
def openFile(self):
self.centralWidget.setText("<b>File > Open...</b> clicked")
def Minutia(self):
# self.centralWidget.setText("<b>Operations > Minutia</b> clicked")
self.statusbar = self.statusBar()
self.minutia_window = MinutiaWindow(self)
self.minutia_window.show()
def Comparison(self):
self.statusbar = self.statusBar()
self.comparison_window = ComparisonWindow(self)
self.comparison_window.show()
def ROCCurve(self):
self.centralWidget.setText("<b>Operations > ROC</b> clicked")
def helpContent(self):
self.centralWidget.setText("<b>Help > Help Content...</b> clicked")
def about(self):
self.centralWidget.setText("<b>Help > About...</b> clicked")
def _createMenuBar(self):
menuBar = self.menuBar()
file_menu = QMenu("&Accueil", self)
menuBar.addMenu(file_menu)
file_menu.addAction(self.newAction)
file_menu.addAction(self.openAction)
file_menu.addSeparator()
file_menu.addAction(self.exit_action)
operations_menu = menuBar.addMenu("&Opérations")
operations_menu.addAction(self.load_image)
operations_menu.addAction(self.minutia)
operations_menu.addAction(self.comparison)
operations_menu.addAction(self.roc)
help_menu = menuBar.addMenu("&Aide")
help_menu.addAction(self.help_action)
# about_menu = menuBar.addMenu("&À propos")
help_menu.addAction(self.about_action)
def _createStatusBar(self):
self.statusbar = self.statusBar()
self.statusbar.showMessage("Ready", 10000)
def center_on_screen(self):
screen_geometry = QDesktopWidget().availableGeometry()
x = int((screen_geometry.width() - self.width()) / 2)
y = int((screen_geometry.height() - self.height()) / 2)
self.move(x, y)
class MinutiaWindow(QMainWindow):
def __init__(self, parent=Window):
self.chemin_image = " "
super(MinutiaWindow, self).__init__(parent)
self.setWindowTitle("Interface d'extraction des Minuties")
self.resize(880, 450)
self.center_on_screen()
# self.centralWidget.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
# self.setCentralWidget(self.centralWidget)
self.select_image_label = QLabel(self)
self.select_image_label.resize(400, 350)
self.select_image_label.move(20,20)
self.minutia_image_label = QLabel(self)
self.minutia_image_label.resize(400, 350)
self.minutia_image_label.move(500,20)
# self.setCentralWidget(label)
select_button = QPushButton("Sélectionner une Image", self)
select_button.clicked.connect(self.select_images)
select_button.move(115, 400)
select_button.adjustSize()
extraction_button = QPushButton("Extraire les Minuties", self)
extraction_button.clicked.connect(self.select_images_test)
extraction_button.move(590, 400)
extraction_button.adjustSize()
self._createStatusBar()
def select_images(self):
file_dialog = QFileDialog(self)
file_dialog.setNameFilter("Images (*.png *.jpg *.jpeg *.bmp)")
file_dialog.setFileMode(QFileDialog.ExistingFiles)
if file_dialog.exec_():
selected_image = file_dialog.selectedFiles()
print(f"Selected Images: {selected_image}")
# label = QLabel(self)
pixmap = QPixmap(selected_image[0])
smaller_pixmap = pixmap.scaled(350, 350, Qt.KeepAspectRatio, Qt.FastTransformation)
self.select_image_label.setPixmap(smaller_pixmap)
self.chemin_image = selected_image[0]
#####################################################################""""
# minutia_image = extract_minutiae(selected_image[0])
# minutia_pixmap = QPixmap(minutia_image)
# smaller_minutia_pixmap = minutia_pixmap.scaled(350, 350, Qt.KeepAspectRatio, Qt.FastTransformation)
# self.minutia_image_label.setPixmap(smaller_minutia_pixmap)
#########################################################################
# label.resize(480, 480)
# self.setCentralWidget(self.select_image_label)
def select_images_test(self):
output_image = extract_minutiaecido(self.chemin_image)
minutia_pixmap = QPixmap(output_image)
smaller_minutia_pixmap = minutia_pixmap.scaled(350, 350, Qt.KeepAspectRatio, Qt.FastTransformation)
self.minutia_image_label.setPixmap(smaller_minutia_pixmap)
#########################################################################
# label.resize(480, 480)
# self.setCentralWidget(self.select_image_label)
def _createStatusBar(self):
self.statusbar = self.statusBar()
self.statusbar.showMessage("Sélectionner une image et Extraire les minuties.", 10000)
def center_on_screen(self):
screen_geometry = QDesktopWidget().availableGeometry()
x = int((screen_geometry.width() - self.width()) / 2)
y = int((screen_geometry.height() - self.height()) / 2)
self.move(x, y)
class ComparisonWindow(QMainWindow):
def __init__(self, parent=Window):
super(ComparisonWindow, self).__init__(parent)
self.image_path_1 = ""
self.image_path_2 = ""
self.setWindowTitle("Interface de Comparaison")
self.resize(880, 400)
self.center_on_screen()
# self.centralWidget.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
# self.setCentralWidget(self.centralWidget)
self.select_image_label_1 = QLabel(self)
self.select_image_label_1.resize(400, 350)
self.select_image_label_1.move(20,40)
self.select_image_label_2 = QLabel(self)
self.select_image_label_2.resize(400, 350)
self.select_image_label_2.move(500,40)
# self.setCentralWidget(label)
select_button_1 = QPushButton("Sélectionner une Image", self)
select_button_1.clicked.connect(self.select_image_1)
select_button_1.move(115, 10)
select_button_1.adjustSize()
select_button_2 = QPushButton("Sélectionner une Image", self)
select_button_2.clicked.connect(self.select_image_2)
select_button_2.move(590, 10)
select_button_2.adjustSize()
comparison_button = QPushButton("Comparer", self)
comparison_button.clicked.connect(self.comparison)
comparison_button.move(395, 150)
comparison_button.adjustSize()
self.text_label = QLabel("...", self)
self.text_label.setFont(QFont("Georgia", 18, weight = 50, italic = True)) # Adjust font size and style as needed
self.text_label.setStyleSheet("color: green") # Set text color
self.text_label.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
# self.setCentralWidget(text_label)
self.text_label.move(410, 180)
self.text_label.adjustSize()
self._createStatusBar()
def comparison(self):
if self.image_path_1 and self.image_path_2:
# Effectuer la comparaison des images
resultat_comparaison = match_images(self.image_path_1, self.image_path_2)
print("Taux de correspondance des minuties entre les deux images:", resultat_comparaison)
# Afficher le résultat de la comparaison dans l'interface utilisateur
self.text_label.setText(f"{resultat_comparaison:}%")
self.text_label.adjustSize()
else:
print("Veuillez sélectionner deux images pour la comparaison.")
def select_image_1(self):
file_dialog = QFileDialog(self)
file_dialog.setNameFilter("Images (*.png *.jpg *.jpeg *.bmp)")
file_dialog.setFileMode(QFileDialog.ExistingFiles)
if file_dialog.exec_():
selected_image = file_dialog.selectedFiles()
print(f"Selected Image 1: {selected_image[0]}")
self.image_path_1 = selected_image[0]
pixmap = QPixmap(selected_image[0])
smaller_pixmap = pixmap.scaled(350, 350, Qt.KeepAspectRatio, Qt.FastTransformation)
self.select_image_label_1.setPixmap(smaller_pixmap)
kp1, des1 = extract_minutiaepathimage1(self.image_path_1)
def select_image_2(self):
file_dialog = QFileDialog(self)
file_dialog.setNameFilter("Images (*.png *.jpg *.jpeg *.bmp)")
file_dialog.setFileMode(QFileDialog.ExistingFiles)
if file_dialog.exec_():
selected_image = file_dialog.selectedFiles()
print(f"Selected Image 2: {selected_image[0]}")
self.image_path_2 = selected_image[0]
pixmap = QPixmap(selected_image[0])
smaller_pixmap = pixmap.scaled(350, 350, Qt.KeepAspectRatio, Qt.FastTransformation)
self.select_image_label_2.setPixmap(smaller_pixmap)
kp2, des2 = extract_minutiaepathimage2(self.image_path_2)
def _createStatusBar(self):
self.statusbar = self.statusBar()
self.statusbar.showMessage("Sélectionner une image et Extraire les minuties.", 10000)
def center_on_screen(self):
screen_geometry = QDesktopWidget().availableGeometry()
x = int((screen_geometry.width() - self.width()) / 2)
y = int((screen_geometry.height() - self.height()) / 2)
self.move(x, y)
if __name__ == "__main__":
app = QApplication(sys.argv)
win = Window()
win.show()
sys.exit(app.exec_())