-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_antiguooo.py
510 lines (457 loc) · 13.5 KB
/
main_antiguooo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
from random import randint, seed
import math
import os
from gurobipy import GRB, Model, quicksum, GurobiError
import pandas as pd
import time
seed(10)
# midiendo el tiempo de ejecución
t_start = time.time()
# ------------ Construcción de los datos ------------
# Constantes
N_ELECTRICOS = 20
N_DIESEL = 20
N_DESTINOS = 10
N_ORIGENES = 10
N_DIAS = 10
bigM = 100**9
distancias1 = [0, 28, 366, 644, 101, 392, 306, 356, 171, 360, 363] # origen
distancias2 = [0, 546, 205, 41, 559, 304, 244, 35, 80, 59, 197] # destino
tpo_en_bloques1 = [0, 1, 11, 19, 3, 12, 9, 11, 5, 11, 11] # origen
tpo_en_bloques2 = [0, 16, 6, 2, 16, 9, 7, 1, 3, 2, 6] # destino
emisiones = [0.002064, 0.002114, 0.001994, 0.001961]
# Construcción de los conjuntos
Camiones = range(1, N_DIESEL + N_ELECTRICOS + 1) # i in I
Destinos = range(1, N_DESTINOS + 1) # d in D
Origenes = range(1, N_ORIGENES + 1) # o in O
Dias = range(1, N_DIAS + 1) # t in T
Bloques = range(1, 48 + 1) # b in {1,...,48}
# Utils
# PORQUE NO USAMOS MATH.CEIL NOMAS? ESTE LE AGREGA 1 A LOS ENTEROS TB
ceil = lambda a: int(a + 1) # int() trunca floats a la unidad
# Construcción de los parametros
V = {i: 140 for i in Camiones} # V_i
A = {i: randint(300, 643) for i in Camiones} # A_i
E = {i: randint(1, 5) for i in Camiones[: N_DIESEL + 1]} # E_i
for i in range(
N_DIESEL + 1, N_DIESEL + N_ELECTRICOS + 1
):
E[i] = 0
Ckm = {i: randint(112, 225) for i in Camiones} # Ckm_i
Cc = {i: randint(84440000, 277197590) for i in Camiones} # Cc_i para los diesel
Q = {i: randint(106, 200) for i in Camiones} # Q_i
Do = [0, 28, 366, 644, 101, 392, 306, 356, 171, 360, 363] # Do_o
Dd = [0, 546, 205, 41, 559, 304, 244, 35, 80, 59, 197] # Dd_d
Md = {(d, t): randint(50, 90) for d in Destinos for t in Dias} # Md_dt
tmaxd = 10
# tmaxo = 10
Mo = {(o, t): randint(40, 60) for o in Origenes for t in Dias} # Mo_ot
Cq = 20000
Qmax = 10000
Ce = 5000
G = 4760000000 #Ajustar números
R = {o: randint(50, 100) for o in Origenes} # R_o
Bo = {(i, o): tpo_en_bloques1[o] for o in Origenes for i in Camiones}
Bd = {(i, d): tpo_en_bloques2[d] for d in Destinos for i in Camiones}
# ------------ Generar el modelo ------------
model = Model("Entrega 2 Proyecto")
model.setParam("TimeLimit", 30 * 60)
# ------------ Instanciar variables de decisión ------------
U = model.addVars(Bloques, Dias, vtype=GRB.INTEGER, name="U_bt")
X = model.addVars(Camiones, Bloques, Dias, Destinos, vtype=GRB.INTEGER, name="X_ibtd")
W = model.addVars(Camiones, Bloques, Dias, Origenes, vtype=GRB.INTEGER, name="W_ibto")
M = model.addVars(Bloques, Dias, Origenes, vtype=GRB.INTEGER, name="M_bto")
Y = model.addVars(Camiones, Bloques, Dias, Origenes, vtype=GRB.BINARY, name="Y_ibto")
Z = model.addVars(Camiones, Bloques, Dias, Destinos, vtype=GRB.BINARY, name="Z_ibtd")
alpha = model.addVars(Camiones, Bloques, Dias, vtype=GRB.BINARY, name="alpha_ibt")
beta = model.addVars(Camiones, vtype=GRB.BINARY, name="beta_i")
model.update()
if 1 in ls_activas:
model.addConstrs(
(
bigM * (1 - Y[i, b, t, o]) + A[i] >= Do[o]
for i in Camiones
for t in Dias
for b in Bloques
for o in Origenes
),
name="R1a",
)
model.addConstrs(
(
bigM * (1 - Z[i, b, t, d]) + A[i] >= Dd[d]
for i in Camiones
for t in Dias
for b in Bloques
for d in Destinos
),
name="R1b",
)
print("R1 agregada")
# R2
# Relación entre alpha (camión ocupado) con Z e Y (camión parte)
if 2 in ls_activas:
Bloques_para_b0_bd = {}
Bloques_para_b0_bo = {}
for i in Camiones:
for b1 in Bloques[:-2]:
for d in Destinos:
final = b1 + 2 * Bd[(i, d)]
if final > 48:
Bloques_para_b0_bd[(b1, i, d)] = Bloques[b1 + 1 :]
else: # No estoy seguro de estos indices
Bloques_para_b0_bd[(b1, i, d)] = Bloques[b1 + 1 : final]
for o in Origenes:
final = b1 + 2 * Bo[(i, o)]
if final > 48:
Bloques_para_b0_bo[(b1, i, o)] = Bloques[b1 + 1 :]
else:
Bloques_para_b0_bo[(b1, i, o)] = Bloques[b1 + 1 : final]
model.addConstrs(
(
alpha[i, b0, t] >= Z[i, b1, t, d]
for i in Camiones
for t in Dias
for d in Destinos
for b1 in Bloques[:-2]
for b0 in Bloques_para_b0_bd[(b1, i, d)]
),
name="R2a",
)
model.addConstrs(
(
alpha[i, b0, t] >= Y[i, b1, t, o]
for i in Camiones
for t in Dias
for o in Origenes
for b1 in Bloques[:-2]
for b0 in Bloques_para_b0_bo[(b1, i, o)]
),
name="R2b",
)
print("R2 agregada")
# R3
# Cada camión que parte debe volver el mismo día
if 3 in ls_activas:
model.addConstrs(
(
b + 2 * Bd[i, d] <= 48 + bigM * (1 - Z[i, b, t, d])
for i in Camiones
for d in Destinos
for b in Bloques
for t in Dias
),
name="R3a",
)
model.addConstrs(
(
b + 2 * Bo[i, o] <= 48 + bigM * (1 - Y[i, b, t, o])
for i in Camiones
for b in Bloques
for t in Dias
for o in Origenes
),
name="R3b",
)
model.addConstrs(
(
bigM * Y[i, b - Bo[i, o], t, o] >= W[i, b, t, o]
for i in Camiones
for b in Bloques[Bo[i, o] + 1:]
for t in Dias
for o in Origenes
),
name="R3c",
)
print("R3 agregada")
# R4
# Conservación de flujo inventario
r4a_sum1 = lambda t: quicksum(
W[i, b, t, o] for o in Origenes for i in Camiones for b in Bloques
)
r4a_sum2 = lambda t: quicksum(Md[d, t] for d in Destinos)
model.addConstrs(
(
U[1, t + 1] == U[48, t] + r4a_sum1(t) - r4a_sum2(t)
# for b in Bloques
for t in Dias[:-1]
),
name="R4a",
)
r4c_sum1 = quicksum(W[i, 1, 1, o] for o in Origenes for i in Camiones)
r4c_sum2 = quicksum(X[i, 1, 1, d] for d in Destinos for i in Camiones)
model.addConstr(U[1, 1] == r4c_sum1 - r4c_sum2, name="R4c")
print("R4 agregada")
# R5
# Conservación de inventario entre el último bloque de un día y
## el primer bloque del día siguiente
if 5 in ls_activas:
model.addConstrs((U[48, t - 1] == U[1, t] for t in Dias[1:]), name="R5a")
# No se realizan despachos de pedidos en el primer bloque
model.addConstrs(
(Z[i, 1, t, d] == 0 for d in Destinos for i in Camiones for t in Dias),
name="R5b",
)
print("R5 agregada")
# R6
# Cada camión puede estar asignado máximo en cada bloque de tiempo en un día
if 6 in ls_activas:
r6_sum1 = lambda i, b, t: quicksum(
Z[i, b, t, d] for d in Destinos # for j in Pedidos
)
r6_sum2 = lambda i, b, t: quicksum(Y[i, b, t, o] for o in Origenes)
model.addConstrs(
(
alpha[i, b, t] + r6_sum1(i, b, t) + r6_sum2(i, b, t) <= 1
for i in Camiones
for b in Bloques
for t in Dias
),
name="R6",
)
print("R6 agregada")
r6_sum1 = lambda i, b, t: quicksum(
Z[i, b, t, d] for d in Destinos # for j in Pedidos
)
r6_sum2 = lambda i, b, t: quicksum(Y[i, b, t, o] for o in Origenes)
model.addConstrs(
(
alpha[i, b, t] + r6_sum1(i, b, t) + r6_sum2(i, b, t) <= 1
for i in Camiones
for b in Bloques
for t in Dias
),
name="R6",
)
# R7
# Cada camión puede cargar un máximo de madera
if 7 in ls_activas:
model.addConstrs(
(
X[i, b, t, d] <= Q[i]
for i in Camiones
for b in Bloques
for t in Dias
for d in Destinos
),
name="R7a",
)
model.addConstrs(
(
W[i, b, t, o] <= Q[i]
for i in Camiones
for t in Dias
for b in Bloques
for o in Origenes
),
name="R7b",
)
print("R7 agregada")
# R8
# El costo total no debe pasarse del máximo
if 8 in ls_activas:
r8_sum1 = lambda i, b, t: quicksum(
Z[i, b, t, d] * Dd[d] for d in Destinos # for j in Pedidos
)
r8_sum2 = lambda i, b, t: quicksum(Y[i, b, t, o] * Do[o] for o in Origenes)
r8_sum3 = lambda t, b: quicksum(
beta[i] * Cc[i]
+ 2 * (Ckm[i] + E[i] * Ce) * (r8_sum1(i, b, t) + r8_sum2(i, b, t))
for i in Camiones
)
model.addConstr(
quicksum(U[b, t] * Cq + r8_sum3(t, b) for t in Dias for b in Bloques) <= G,
name="R8",
)
print("R8 agregada")
# R9
# Los almacenes de madera de la casa matriz tienen una capacidad máxima
if 9 in ls_activas:
model.addConstrs((U[b, t] <= Qmax for b in Bloques for t in Dias), name="R9")
print("R9 agregada")
# R10
# Los pedidos deben llegar a tiempo
if 10 in ls_activas:
# TODO: reactivar
# model.addConstrs(
# (
# Y[i, b, t, o] * (b + Bo[i,o]) <= tmaxo
# for i in Camiones
# for b in Bloques
# for t in Dias
# for o in Origenes
# ),
# name="R10a",
# )
model.addConstrs(
(
Z[i, b, t, d] * (b + Bd[i, d]) <= tmaxd
for i in Camiones
for b in Bloques
for t in Dias
for d in Destinos
),
name="R10b",
)
print("R10 agregada")
# R11
# Relación de las variables con alfa
model.addConstrs(
(
(1 - Z[i, b, t, d]) >= alpha[i, b, t]
for i in Camiones
for b in Bloques
for t in Dias
for d in Destinos
),
name="R11a",
)
model.addConstrs(
(
(1 - Y[i, b, t, o]) >= alpha[i, b, t]
for i in Camiones
for b in Bloques
for t in Dias
for o in Origenes
),
name="R11b",
)
sumc = lambda i, b, t: quicksum(
alpha[i, b1, t] for b1 in Bloques[b : b + 2 * Bd[i, d]]
)
model.addConstrs(
(
2 * Bd[i, d] * Z[i, b, t, d] <= sumc(i, b, t)
for i in Camiones
for b in Bloques
for t in Dias
for d in Destinos
),
name="R11c",
)
sumd = lambda i, b, t: quicksum(
alpha[i, b1, t] for b1 in Bloques[b : b + 2 * Bd[i, d]]
)
model.addConstrs(
(
2 * Bo[i, o] * Z[i, b, t, o] <= sumd(i, b, t)
for i in Camiones
for b in Bloques
for t in Dias
for o in Origenes
),
name="R11d",
)
print("R11 agregada")
# R12
# Relación entre alfa y beta
if 12 in ls_activas:
model.addConstrs(
(
quicksum(alpha[i, b, t] for b in Bloques for t in Dias)
<= bigM * beta[i]
for i in Camiones
),
name="R12",
)
print("R12 agregada")
# R13
# Flujo de producción
if 13 in ls_activas:
model.addConstrs(
(
M[b, t, o]
== R[o] + M[b - 1, t , o] - quicksum(W[i, b - 1, t, o] for i in Camiones)
for b in Bloques[1:] # b ∈{2,…,48}
for o in Origenes
for t in Dias
),
name="R13",
)
print("R13 agregada")
# R14
# Relación carga con inicio del viaje
model.addConstrs(
(
bigM * Y[i, b - Bo[i, o], t, o] >= W[i, b, t, o]
for i in Camiones
for o in Origenes
for t in Dias
for b in range(Bo[i, o] + 1, 48)
# Propuesta: for b in Bloques[Bo[i, o] + 1, 48]
),
name="R14a",
)
model.addConstrs(
(
Y[i, b - Bo[i, o], t, o] <= W[i, b, t, o]
for i in Camiones
for o in Origenes
for t in Dias
for b in range(Bo[i, o] + 1, 48)
),
name="R14b",
)
model.addConstrs(
(
Z[i, b - Bd[i, d], t, d] <= X[i, b, t, d]
for i in Camiones
for d in Destinos
for t in Dias
for b in range(Bd[i, d] + 1, 48)
),
name="R14d",
)
print("R14 agregada")
# R15
# La cantidad de madera ofrecida por cada origen en el primer bloque de cada dia es su tasa de producción diaria
if 15 in ls_activas:
model.addConstrs((M[0, 0, o] == R[o] for o in Origenes), name="R15")
print("R15 agregada")
# R16
# Los camiones eléctricos no emiten CO2
if 16 in ls_activas:
pass
model.addConstrs(
(E[i] == 0 for i in Camiones[N_ELECTRICOS:]), name="R16"
)
print("R16 agregada")
# R17
# Los camiones parten desocupados el primer bloque de cada dia
if 17 in ls_activas:
model.addConstrs(
(alpha[i, 0, t] == 0 for i in Camiones for t in Dias),
name="R17a",
)
print("R17 agregada")
# ------------ Función objetivo ------------
fo_sum1 = lambda t, b, i: quicksum(
Z[i, b, t, d] * Dd[d] for d in Destinos # for j in Pedidos
)
fo_sum2 = lambda t, b, i: quicksum(Y[i, b, t, o] * Do[o] for o in Origenes)
objetivo = quicksum(
2 * E[i] * (fo_sum1(t, b, i) + fo_sum2(t, b, i))
for t in Dias
for b in Bloques
for i in Camiones
)
model.setObjective(objetivo, GRB.MINIMIZE)
# ------------ Optimización del modelo ------------
model.optimize()
# ------------ Manejo de soluciones ------------
if model.status == GRB.OPTIMAL:
model.printAttr("X")
print("Betas:")
for i in Camiones:
print(beta[i])
print("Alfas:")
for t in Dias:
for i in Camiones:
for b in Bloques:
print(alpha[i, b, t])
else:
print("Trata de nuevoo!")
with open('resultados.txt', 'w') as archivo:
archivo.write(model.printAttr("X"))
t_end = time.time()
print(f'\n\ntiempo de ejecución: {t_end - t_start}')