-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
135 lines (115 loc) · 5.17 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import numpy as np
import pandas as pd
from torch.utils.data import Dataset
from bert import Tokenizer
def discretize(data):
value_counts = data.value_counts(dropna=False)
value_counts.sort_index(inplace=True, na_position='first')
dvs = value_counts.index.values
is_nan = pd.isnull(dvs)
if is_nan.any():
assert is_nan.sum() == 1, is_nan
no_nan = dvs[~is_nan]
cat = pd.Categorical(data, categories=no_nan)
bin_ids = cat.codes + 1
discrete_map = {float('nan'): 0}
for i, val in enumerate(no_nan):
discrete_map[val] = i + 1
else:
cat = pd.Categorical(data, categories=dvs)
bin_ids = cat.codes
discrete_map = {val: i for i, val in enumerate(dvs)}
bin_ids = bin_ids.astype(np.int32, copy=False)
return bin_ids, discrete_map, value_counts
def get_dataframe(filepath, names, columns):
df = pd.read_csv(filepath,
names=names,
usecols=columns,
escapechar='\\',
encoding='utf-8',
on_bad_lines='skip',
low_memory=False)[columns]
return df
class TableDataset(Dataset):
def __init__(self, dataframe, intervals, bin_hashes, one_hashes, table_id=0, max_length=None, granularity={}):
''' dataset for a table
- dataframe: a pandas dataframe
- intervals: dict mapping each column to a list of interval sizes
- table_id: int id of this dataframe
'''
super(TableDataset, self).__init__()
self.table_id = table_id
self.table = dataframe
self.intervals = intervals
self.bin_hash = bin_hashes
self.one_hash = one_hashes
# discretize tables and save the vocab mapping, counts
self.vocab = {}
self.counts = {}
for col in self.table.columns:
self.table[col], self.vocab[col], self.counts[col] = discretize(self.table[col])
self.tokenizer = Tokenizer(self.table_id,
self.table.columns,
self.intervals,
self.bin_hash,
self.one_hash,
max_length=max_length,
granularity=granularity,)
self.tokenizer.set_vocab(self.vocab, self.counts, dataframe.shape[0])
# column masking probability
self.column_mask = 0.15
self.mask = 0.35
def stats(self):
for k,v in self.vocab.items():
print(f'{k}: {len(v)}')
def sketch(self, key, predicates={}):
query = []
for col, preds in predicates.items():
if '=' in preds:
assert preds['='] in self.vocab[col], f"equality predicate `{col}={preds['=']}` doesn't exist in vocab"
val = self.vocab[col][preds['=']]
p = f"`{col}` == {val}"
else:
assert '<' in preds or '>' in preds, f"missing valid predicate operator for {col}: {preds}"
if '<' in preds:
val = self.tokenizer.leq(preds['<'], self.vocab[col])
p = f"`{col}` < {val}"
else:
val = self.tokenizer.geq(preds['>'], self.vocab[col])
p = f"`{col}` > {val}"
query.append(p)
query = ' and '.join(query)
res = self.table.query(query) if query else self.table
counts = res.groupby([key]).size()
counts = torch.tensor(np.array([counts.index.values, counts.values]), dtype=torch.int64).t()
bins = torch.stack([b_hash(counts[:, 0]) for b_hash in self.bin_hash])
ones = torch.stack([o_hash(counts[:, 0]) for o_hash in self.one_hash]).float()
counts = counts.float()
sketch_shape = (len(self.bin_hash), self.bin_hash[0].num_buckets)
pos = torch.zeros(sketch_shape, dtype=torch.float32)
neg = torch.zeros(sketch_shape, dtype=torch.float32)
pos.scatter_(-1, bins, ones * (ones > 0) * counts[:, 1], reduce='add') # positive values
neg.scatter_(-1, bins, ones * (ones < 0) * counts[:, 1], reduce='add') # negative values
return pos, neg, res.shape[0]
def __getitem__(self, index):
record = self.table.iloc[index]
return self.tokenizer(record, column_mask=self.column_mask, pos_mask=self.mask)
def __len__(self):
return len(self.table)
def get_table_dataset(filepath, names, columns, intervals, bin_hashes, one_hashes, table_id=0, max_length=None, granularity={}):
df = pd.read_csv(filepath,
names=names,
usecols=columns,
escapechar='\\',
encoding='utf-8',
on_bad_lines='skip',
low_memory=False)[columns]
dataset = TableDataset(df,
intervals,
bin_hashes,
one_hashes,
table_id=table_id,
max_length=max_length,
granularity=granularity)
return dataset