-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_auto.py
275 lines (218 loc) · 8.36 KB
/
input_auto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from clases.agentes import Ship, Port, Route
from geopy.distance import geodesic
import numpy as np
import random
import math
def generate_agents(env, num_ports, debug=False):
"""
Input:
env -> Entorno de simpy
num_ports -> Numero de puertos a generar
Output:
ports -> Diccionario de {id:<clase Port>}
routes -> Diccionario de {id:<clase Route>}
ships -> Diccionario de {id:<clase Ship>}
"""
# Generaremos las clases solo de las rutas que vamos a utilizar
# Generamos los puertos
ports, global_capacity = gen_ports(env, num_ports)
# Generamos un entero aleatorio que representa la cantidad
# de barcos que tendra nuestra simulacion
num_ships = random.randint(1, global_capacity)
# Calculamos el maximo de rutas posibles entre puertos
max_routes = math.comb(num_ports, 2)*2
# Obtenemos todas las rutas posibles entre puertos
all_route = all_routes(num_ports)
# Generamos los barcos junto con las rutas que se usaran a priori
ships, used_routes = gen_ships(env, num_ships, num_ports, all_route)
# Generamos las rutas
routes = gen_route(env, used_routes)
matrix = gen_matrix(num_ports, routes)
if debug:
if num_ports <4:
with open('debug.txt', 'w') as debugg:
debugg.write(f"BARCOS GENERADOS:{num_ships}\nRUTAS GENERADOS: {len(all_route)}\n")
debugg.write("BARCOS\n")
for id in ships:
ship =ships[id]
debugg.write(f"Nombre: {ship.name}, Velocidad: {ship.speed}, ID del Puerto: {ship.port_id}, "
f"Ciclos: {ship.cycles}, Recarga: {ship.recharge}, Itinerario: {ship.itinerary}\n")
debugg.write("RUTAS\n")
for id in routes:
route = routes[id]
debugg.write(f"Puerto Inicial: {route.initial_port_id}, Puerto Final: {route.final_port_id}, "
f"Distancia: {route.dist}, "
f"Clima: {route.weather}, Seguridad: {route.security}, "
f"Regulaciones: {route.regulations}\n")
debugg.write("Puertos\n")
for id in ports:
port = ports[id]
debugg.write(f"Puerto: {port.name}; Capacidad: {port.capacity}, port:{port.port_id}\n")
return ports, routes, ships, matrix
def gen_ports(env, num_ports):
"""
Dado un número de puertos genera puertos aleatorios de la clase Ports
Input:
num_ports = Número de puertos a generar
Output:
ports -> Diccionario con clases Port
global_capacity -> La suma de todas las capacidades de los puertos
"""
ports = {}
global_capacity = 0
for port in range(0, num_ports):
name = f"Puerto {port}"
capacity = int(random.uniform(1, 50))
global_capacity += capacity
ports[port] = Port(env, name, capacity, port)
return ports, global_capacity
def all_routes(num_ports):
"""
Input:
num_ports -> Número entero, representa la cantidad de puertos que existen
Output:
all_routes -> Lista de todas las rutas posibles en formato tupla
Ejemplo:
Suponiendo dos puertos con ID 0, 1 respectivamente
all_routes == [(0,1),(1,0)]
"""
all_routes = {}
for i in range(num_ports):
for j in range(num_ports):
if i != j:
route = (i, j)
if i in all_routes:
all_routes[i].append(route)
else:
all_routes[i] = []
all_routes[i].append(route)
return all_routes
def gen_ships(env, num_ships, num_ports, all_routes):
"""
Input:
num_ships -> Numero de barcos a generar
num_ports -> Numero de puertos en la simulacion
all_routes -> Todas las rutas posibles
Output:
ships -> Diccionario de barcos de la clase Ship
used_routes -> Las rutas que se usaron por estos barcos
"""
used_routes = set()
ships = {}
for ship in range(0, num_ships):
# Generamos un largo del itinerario aleatorio
num_tasks = random.randint(2, 3)
name = f"Barco {ship}"
speed = gen_velocity()
# Generamos un puerto del id aleatorio
port_id = random.randint(0, num_ports-1)
recharge = gen_recharge()
# Probabilidad 0.5 de itinerario cíclico
cycles = random.random() < 0.5
# Generamos el itinerario y las rutas que se usaran
itinerary, used_routes = gen_itinerary(num_tasks, port_id,
all_routes, used_routes,cycles)
# Guardar la clase Ship en el diccionario con su id
ships[ship] = Ship(env, name, speed, port_id,
cycles, recharge, itinerary)
return ships, used_routes
def gen_itinerary(num_tasks, port_id, all_routes, used_routes,cycles):
"""
Input:
num_tasks -> Largo del itinerario
port_id -> Id del puerto inciial
all_routes -> Todas las rutas posibles
Output:
itinerary -> Lista con los id de los puertos que debe visitar
used_routes -> Conjunto que contiene las rutas que realmente se usaron
"""
itinerary = []
for task in range(0, num_tasks):
next_route = random.choice(all_routes[port_id])
used_routes.add(next_route)
next_port_id = next_route[1]
itinerary.append(next_port_id)
port_id = next_port_id
# Si un barco ciclico va al puerto x en su ultimo viaje
# no queremos que en el siguiente tiempo vaya denuevo al puerto x,
# sino a uno distinto!, se agrega un puerto mas a su itinerario
# por simplicidad
if itinerary[0] == itinerary[-1] and cycles==True:
next_route = random.choice(all_routes[port_id])
used_routes.add(next_route)
next_port_id = next_route[1]
itinerary.append(next_port_id)
port_id = next_port_id
return itinerary, used_routes
def gen_route(env, used_routes):
"""
Input:
used_routes -> Todas las rutas que usaran los barcos
Output:
routes -> Diccionario del estilo {id:<class Port>}
"""
routes = {}
used_routes = list(used_routes)
done = set()
sample_points = {}
for route in used_routes:
initial_port_id = route[0]
final_port_id = route[1]
other_route = f"{final_port_id}-{initial_port_id}"
route_name = f"{initial_port_id}-{final_port_id}"
# Cumpla la simetria
if other_route in done:
dist = routes[other_route].dist
else:
done.add(route_name)
dist,sample_points = gen_dist(initial_port_id,final_port_id,sample_points)
print(f"distancia generada: {dist}")
capacity = gen_capacity_route()
weather = gen_weather()
security = gen_security()
regulations = gen_regulations()
routes[route_name] = Route(env, initial_port_id, final_port_id, dist,
capacity, weather, security, regulations)
return routes
def gen_random_point():
latitude = random.uniform(-90, 90)
longitude = random.uniform(-180, 180)
return latitude, longitude
def gen_dist(id_in,id_out,sample_points):
while id_in not in sample_points:
lat, lon = gen_random_point()
p1 = (lat, lon)
if p1 not in list(sample_points.values()):
sample_points[id_in] = p1
while id_out not in sample_points:
lat, lon = gen_random_point()
p2 = (lat, lon)
if p2 not in list(sample_points.values()):
sample_points[id_out] = p2
p1 = sample_points[id_in]
p2 = sample_points[id_out]
return geodesic(p1,p2).km/1000, sample_points
def gen_matrix(num_ports, routes):
"""
Input:
num_ports -> Número de puertos
routes -> Diccionario de las clases Route
Output:
matrix -> Matriz de adyacencia
"""
matrix = [[0 for _ in range(num_ports)] for _ in range(num_ports)]
for route in routes:
matrix[routes[route].initial_port_id][routes[route].final_port_id] = route
return matrix
def gen_velocity():
return int(random.uniform(30, 100))
def gen_recharge():
return int(random.uniform(1, 20))
def gen_capacity_route():
return random.randint(50, 100)
def gen_weather():
return random.randint(0, 100)
def gen_security():
return random.randint(0, 100)
def gen_regulations():
return random.randint(0, 100)