|
1 |
| -<h1 align="center"> |
2 |
| - <img src="docs/imgs/trainax_logo.png" width="400"> |
3 |
| - <br> |
4 |
| - Trainax |
5 |
| - <br> |
6 |
| -</h1> |
7 |
| - |
8 | 1 | <p align="center">
|
9 | 2 | <b>Learning Methodologies for Autoregressive Neural Emulators.</b>
|
10 | 3 | </p>
|
11 | 4 |
|
| 5 | +<p align="center"> |
| 6 | +<a href="https://pypi.org/project/trainax/"> |
| 7 | + <img src="https://img.shields.io/pypi/v/trainax.svg" alt="PyPI"> |
| 8 | +</a> |
| 9 | +<a href="https://github.com/ceyron/trainax/actions/workflows/test.yml"> |
| 10 | + <img src="https://github.com/ceyron/trainax/actions/workflows/test.yml/badge.svg" alt="Tests"> |
| 11 | +</a> |
| 12 | +<a href="https://fkoehler.site/trainax/"> |
| 13 | + <img src="https://img.shields.io/badge/docs-latest-green" alt="docs-latest"> |
| 14 | +</a> |
| 15 | +<a href="https://github.com/ceyron/trainax/releases"> |
| 16 | + <img src="https://img.shields.io/github/v/release/ceyron/trainax?include_prereleases&label=changelog" alt="Changelog"> |
| 17 | +</a> |
| 18 | +<a href="https://github.com/ceyron/trainax/blob/main/LICENSE.txt"> |
| 19 | + <img src="https://img.shields.io/badge/license-MIT-blue" alt="License"> |
| 20 | +</a> |
| 21 | +</p> |
| 22 | + |
12 | 23 | <p align="center">
|
13 | 24 | <a href="#installation">Installation</a> •
|
14 | 25 | <a href="#quickstart">Quickstart</a> •
|
|
22 | 33 | <img src="docs/imgs/sample_two_step_supervised.svg" width="400">
|
23 | 34 | </p>
|
24 | 35 |
|
| 36 | +Convenience abstractions using `optax` to train neural networks to |
| 37 | +autoregressively emulate time-dependent problems taking care of trajectory |
| 38 | +subsampling and offering a wide range of training methodologies (regarding |
| 39 | +unrolling length and including differentiable physics). |
| 40 | + |
25 | 41 | ## Installation
|
26 | 42 |
|
27 | 43 | Clone the repository, navigate to the folder and install the package with pip:
|
28 | 44 | ```bash
|
29 |
| -pip install . |
| 45 | +pip install trainax |
30 | 46 | ```
|
31 | 47 |
|
32 | 48 | Requires Python 3.10+ and JAX 0.4.13+. 👉 [JAX install guide](https://jax.readthedocs.io/en/latest/installation.html).
|
33 | 49 |
|
| 50 | +## Documentation |
| 51 | + |
| 52 | +The documentation is available at [fkoehler.site/trainax](https://fkoehler.site/trainax/). |
| 53 | + |
34 | 54 | ## Quickstart
|
35 | 55 |
|
36 | 56 | Train a kernel size 2 linear convolution (no bias) to become an emulator for the
|
@@ -136,7 +156,7 @@ and modify the gradient flow, etc.
|
136 | 156 | * Composability
|
137 | 157 |
|
138 | 158 |
|
139 |
| -## A Taxonomy of Training Methodologies |
| 159 | +<!-- ## A Taxonomy of Training Methodologies |
140 | 160 |
|
141 | 161 | The major axes that need to be chosen are:
|
142 | 162 |
|
@@ -192,15 +212,25 @@ There are three levels of hierarchy:
|
192 | 212 | trajectory substacker.
|
193 | 213 |
|
194 | 214 | You can find an overview of predictor learning setups
|
195 |
| -[here](https://fkoehler.site/predictor-learning-setups/). |
| 215 | +[here](https://fkoehler.site/predictor-learning-setups/). --> |
196 | 216 |
|
197 |
| -## License |
| 217 | +## Acknowledgements |
198 | 218 |
|
199 |
| -MIT, see [here](LICENSE.txt) |
| 219 | +### Citation |
| 220 | + |
| 221 | +This package was developed as part of the `APEBench paper` (accepted at Neurips 2024), we will soon add the citation here. |
| 222 | + |
| 223 | +### Funding |
| 224 | + |
| 225 | +The main author (Felix Koehler) is a PhD student in the group of [Prof. Thuerey at TUM](https://ge.in.tum.de/) and his research is funded by the [Munich Center for Machine Learning](https://mcml.ai/). |
| 226 | + |
| 227 | +### License |
| 228 | + |
| 229 | +MIT, see [here](https://github.com/Ceyron/trainax/blob/main/LICENSE.txt) |
200 | 230 |
|
201 | 231 | ---
|
202 | 232 |
|
203 | 233 | > [fkoehler.site](https://fkoehler.site/) ·
|
204 | 234 | > GitHub [@ceyron](https://github.com/ceyron) ·
|
205 |
| -> X [@felix_m_koehler](https://twitter.com/felix_m_koehler) |
206 |
| -
|
| 235 | +> X [@felix_m_koehler](https://twitter.com/felix_m_koehler) · |
| 236 | +> LinkedIn [Felix Köhler](www.linkedin.com/in/felix-koehler) |
0 commit comments