Skip to content

Commit

Permalink
Aerosol activation emulators: GP, ET, and ARG-informed (#349)
Browse files Browse the repository at this point in the history
add the remaining features from Mikhal's work: GP, ET trainings and training with informed data from ARG
  • Loading branch information
sajjadazimi authored Mar 13, 2024
1 parent e2e1a54 commit c5ea233
Show file tree
Hide file tree
Showing 8 changed files with 479 additions and 167 deletions.
2 changes: 1 addition & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[deps]
ClimaParams = "5c42b081-d73a-476f-9059-fd94b934656c"
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
ClimaParams = "5c42b081-d73a-476f-9059-fd94b934656c"
CloudMicrophysics = "6a9e3e04-43cd-43ba-94b9-e8782df3c71b"
Dierckx = "39dd38d3-220a-591b-8e3c-4c3a8c710a94"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Expand Down
5 changes: 5 additions & 0 deletions docs/src/AerosolActivation.md
Original file line number Diff line number Diff line change
Expand Up @@ -278,3 +278,8 @@ make_ARG_figX(5)
![](Abdul-Razzak_and_Ghan_fig_3.svg)
![](Abdul-Razzak_and_Ghan_fig_4.svg)
![](Abdul-Razzak_and_Ghan_fig_5.svg)

## Aerosol activation prediction with ML emulators
The CloudMicrophysics package offers an advanced feature for predicting the aerosol activation fraction using machine-learned emulators. Users have access to a function that utilizes pre-trained models for the prediction of activation fraction. Additionally, the package includes tools for training machine learning models, tailored to specific datasets or needs. The training process can benefit from incorporating the ARG activation equation, enhancing the relevance of training data. Emulator training, covering neural networks, Gaussian processes, and EvoTrees, is showcased in `test/aerosol_activation_emulators.jl`.

Using ML emulators for predicting aerosol activation is provided through an extension to the main package. This extension will be loaded with `CloudMicrophysics.jl` if both `MLJ.jl` and `DataFrames.jl` are loaded by the user as well.
81 changes: 81 additions & 0 deletions ext/Common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,10 @@ import CSV
import DataFrames as DF
using DataFramesMeta

import CloudMicrophysics.AerosolModel as AM
import CloudMicrophysics.AerosolActivation as AA
import Thermodynamics.Parameters as TDP

function get_num_modes(df::DataFrame)
i = 1
while true
Expand Down Expand Up @@ -68,6 +72,83 @@ function preprocess_aerosol_data(X::DataFrame)
return X
end

function get_ARG_act_frac(
data_row::NamedTuple,
ap::CMP.AerosolActivationParameters,
aip::CMP.AirProperties,
tps::TDP.ThermodynamicsParameters,
FT::DataType,
)

num_modes = get_num_modes(data_row)
@assert num_modes > 0
mode_Ns = []
mode_means = []
mode_stdevs = []
mode_kappas = []
w = data_row.velocity
T = data_row.initial_temperature
p = data_row.initial_pressure
for i in 1:num_modes
push!(mode_Ns, data_row[Symbol("mode_$(i)_N")])
push!(mode_means, data_row[Symbol("mode_$(i)_mean")])
push!(mode_stdevs, data_row[Symbol("mode_$(i)_stdev")])
push!(mode_kappas, data_row[Symbol("mode_$(i)_kappa")])
end
ad = AM.AerosolDistribution(
Tuple(
AM.Mode_κ(
mode_means[i],
mode_stdevs[i],
mode_Ns[i],
FT(1),
FT(1),
FT(0),
FT(mode_kappas[i]),
1,
) for i in 1:num_modes
),
)
pv0 = TD.saturation_vapor_pressure(tps, FT(T), TD.Liquid())
vapor_mix_ratio = pv0 / TD.Parameters.molmass_ratio(tps) / (p - pv0)
q_vap = vapor_mix_ratio / (vapor_mix_ratio + 1)
q = TD.PhasePartition(FT(q_vap), FT(0), FT(0))

return collect(
AA.N_activated_per_mode(ap, ad, aip, tps, FT(T), FT(p), FT(w), q),
) ./ mode_Ns
end

function get_ARG_act_frac(
X::DataFrame,
ap::CMP.AerosolActivationParameters,
aip::CMP.AirProperties,
tps::TDP.ThermodynamicsParameters,
FT::DataType,
)
return transpose(
hcat(get_ARG_act_frac.(NamedTuple.(eachrow(X)), ap, aip, tps, FT)...),
)
end

function preprocess_aerosol_data_with_ARG_act_frac(
X::DataFrame,
ap::CMP.AerosolActivationParameters,
aip::CMP.AirProperties,
tps::TDP.ThermodynamicsParameters,
FT::DataType,
)
f(y) = get_ARG_act_frac(y, ap, aip, tps, FT)
num_modes = get_num_modes(X)
X = DF.transform(
X,
AsTable(All()) =>
ByRow(x -> f(x)) =>
[Symbol("mode_$(i)_ARG_act_frac") for i in 1:num_modes],
)
return preprocess_aerosol_data(X)
end

function target_transform(act_frac)
return @. atanh(2.0 * 0.99 * (act_frac - 0.5))
end
Expand Down
16 changes: 16 additions & 0 deletions ext/EmulatorModelsExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,22 @@ import CloudMicrophysics.AerosolActivation as AA
import CloudMicrophysics.AerosolModel as AM
import CloudMicrophysics.Parameters as CMP

"""
N_activated_per_mode(machine, ap, ad, aip, tps, T, p, w, q)
- `machine` - ML model
- `ap` - a struct with aerosol activation parameters
- `ad` - aerosol distribution struct
- `aip` - a struct with air parameters
- `tps` - a struct with thermodynamics parameters
- `T` - air temperature
- `p` - air pressure
- `w` - vertical velocity
- `q` - phase partition
Returns the number of activated aerosol particles
in each aerosol size distribution mode by using a trained emulator.
"""
function AA.N_activated_per_mode(
machine::MLJ.Machine,
ap::CMP.AerosolActivationParameters,
Expand Down
3 changes: 3 additions & 0 deletions test/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,16 @@ ClimaParams = "5c42b081-d73a-476f-9059-fd94b934656c"
CloudMicrophysics = "6a9e3e04-43cd-43ba-94b9-e8782df3c71b"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataFramesMeta = "1313f7d8-7da2-5740-9ea0-a2ca25f37964"
EvoTrees = "f6006082-12f8-11e9-0c9c-0d5d367ab1e5"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
GaussianProcesses = "891a1506-143c-57d2-908e-e1f8e92e6de9"
KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c"
MLJ = "add582a8-e3ab-11e8-2d5e-e98b27df1bc7"
MLJFlux = "094fc8d1-fd35-5302-93ea-dabda2abf845"
MLJModels = "d491faf4-2d78-11e9-2867-c94bc002c0b7"
RootSolvers = "7181ea78-2dcb-4de3-ab41-2b8ab5a31e74"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Thermodynamics = "b60c26fb-14c3-4610-9d3e-2d17fe7ff00c"

Expand Down
Loading

0 comments on commit c5ea233

Please sign in to comment.