-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathxp_kfolds.py
200 lines (175 loc) · 6.79 KB
/
xp_kfolds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import List, Optional, Literal
import os
import numpy as np
from sacred import Experiment
from sacred.commands import print_config
from sacred.run import Run
from sacred.observers import FileStorageObserver, TelegramObserver
from sacred.utils import apply_backspaces_and_linefeeds
from conivel.datas.dekker import DekkerDataset
from conivel.datas.ontonotes import OntonotesDataset
from conivel.datas.context import context_retriever_name_to_class
from conivel.predict import predict
from conivel.score import score_ner
from conivel.train import train_ner_model
from conivel.utils import (
RunLogScope,
gpu_memory_usage,
sacred_archive_huggingface_model,
sacred_log_series,
pretrained_bert_for_token_classification,
)
script_dir = os.path.abspath(os.path.dirname(__file__))
ex = Experiment()
ex.captured_out_filter = apply_backspaces_and_linefeeds # type: ignore
ex.observers.append(FileStorageObserver("runs"))
if os.path.isfile(f"{script_dir}/telegram_observer_config.json"):
ex.observers.append(
TelegramObserver.from_config(f"{script_dir}/telegram_observer_config.json")
)
@ex.config
def config():
# -- datas parameters
# number of folds
k: int = 5
# seed to use when folds shuffling. If ``None``, no shuffling is
# performed.
shuffle_kfolds_seed: Optional[int] = None
# wether to restrict the experiment to a group of book in the
# Dekker et al's dataset
book_group: Optional[str] = None
# -- common parameters
batch_size: int
# wether models should be saved or not
save_models: bool = True
# number of experiment repeats
runs_nb: int = 5
# -- context retrieval
# context retriever heuristic name
context_retriever: str
# context retriever extra args (not including ``sents_nb``)
context_retriever_kwargs: dict
# -- NER training parameters
# list of number of sents to test
sents_nb_list: list
# number of epochs for NER training
ner_epochs_nb: int = 2
# learning rate for NER training
ner_lr: float = 2e-5
# --
# one of : 'dekker', 'ontonotes'
dataset_name: str = "dekker"
# if dataset_name == 'ontonotes'
dataset_path: Optional[str] = None
@ex.automain
def main(
_run: Run,
k: int,
shuffle_kfolds_seed: Optional[int],
book_group: Optional[str],
batch_size: int,
save_models: bool,
runs_nb: int,
context_retriever: str,
context_retriever_kwargs: dict,
sents_nb_list: List[int],
ner_epochs_nb: int,
ner_lr: float,
dataset_name: Literal["dekker", "ontonotes"],
dataset_path: Optional[str],
):
print_config(_run)
if dataset_name == "dekker":
dataset = DekkerDataset(book_group=book_group)
elif dataset_name == "ontonotes":
assert not dataset_path is None
dataset = OntonotesDataset(dataset_path)
# keep only documents with a number of tokens >= 512
dataset.documents = [
doc for doc in dataset.documents if sum([len(sent) for sent in doc]) >= 512
]
else:
raise ValueError(f"unknown dataset name {dataset_name}")
kfolds = dataset.kfolds(
k, shuffle=not shuffle_kfolds_seed is None, shuffle_seed=shuffle_kfolds_seed
)
precision_matrix = np.zeros((runs_nb, k, len(sents_nb_list)))
recall_matrix = np.zeros((runs_nb, k, len(sents_nb_list)))
f1_matrix = np.zeros((runs_nb, k, len(sents_nb_list)))
metrics_matrices = [
("precision", precision_matrix),
("recall", recall_matrix),
("f1", f1_matrix),
]
for run_i in range(runs_nb):
for fold_i, (train_set, test_set) in enumerate(kfolds):
ctx_retriever = context_retriever_name_to_class[context_retriever](
sents_nb=sents_nb_list, **context_retriever_kwargs
)
ctx_train_set = ctx_retriever(train_set)
# train
with RunLogScope(_run, f"run{run_i}.fold{fold_i}"):
model = pretrained_bert_for_token_classification(
"bert-base-cased", ctx_train_set.tag_to_id
)
model = train_ner_model(
model,
ctx_train_set,
ctx_train_set,
_run=_run,
epochs_nb=ner_epochs_nb,
batch_size=batch_size,
learning_rate=ner_lr,
quiet=True,
)
if save_models:
sacred_archive_huggingface_model(_run, model, "model") # type: ignore
for sents_nb_i, sents_nb in enumerate(sents_nb_list):
_run.log_scalar("gpu_usage", gpu_memory_usage())
ctx_retriever = context_retriever_name_to_class[context_retriever](
sents_nb=sents_nb, **context_retriever_kwargs
)
ctx_test_set = ctx_retriever(test_set)
# test
test_preds = predict(model, ctx_test_set, batch_size=batch_size).tags
precision, recall, f1 = score_ner(ctx_test_set.sents(), test_preds)
_run.log_scalar(
f"run{run_i}.fold{fold_i}.test_precision",
precision,
step=sents_nb,
)
precision_matrix[run_i][fold_i][sents_nb_i] = precision
_run.log_scalar(
f"run{run_i}.fold{fold_i}.test_recall", recall, step=sents_nb
)
recall_matrix[run_i][fold_i][sents_nb_i] = recall
_run.log_scalar(f"run{run_i}.fold{fold_i}.test_f1", f1, step=sents_nb)
f1_matrix[run_i][fold_i][sents_nb_i] = f1
# mean metrics for the current run
for metrics_name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
sacred_log_series(
_run,
f"run{run_i}.{op_name}_test_{metrics_name}",
op(matrix[run_i], axis=0), # (sents_nb_list)
steps=sents_nb_list,
)
# folds mean metrics
for fold_i in range(k):
for metrics_name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
sacred_log_series(
_run,
f"fold{fold_i}.{op_name}_test_{metrics_name}",
op(matrix[:, fold_i, :], axis=0), # (sents_nb_list)
steps=sents_nb_list,
)
# global mean metrics
for name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
sacred_log_series(
_run,
f"{op_name}_test_{name}",
op(matrix, axis=(0, 1)), # (sents_nb)
steps=sents_nb_list,
)