-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathxp_kfolds_neural_gen.py
156 lines (136 loc) · 4.89 KB
/
xp_kfolds_neural_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
from typing import List, Optional
from sacred import Experiment
from sacred.commands import print_config
from sacred.run import Run
from sacred.observers import FileStorageObserver, TelegramObserver
from sacred.utils import apply_backspaces_and_linefeeds
import numpy as np
from conivel.datas.dataset import NERDataset
from conivel.datas.dekker import DekkerDataset
from conivel.datas.context import (
NeuralContextRetriever,
)
from conivel.predict import predict
from conivel.score import score_ner
from conivel.train import train_ner_model
from conivel.utils import (
RunLogScope,
sacred_archive_huggingface_model,
sacred_log_series,
gpu_memory_usage,
pretrained_bert_for_token_classification,
)
script_dir = os.path.abspath(os.path.dirname(__file__))
ex = Experiment()
ex.captured_out_filter = apply_backspaces_and_linefeeds # type: ignore
ex.observers.append(FileStorageObserver("runs"))
if os.path.isfile(f"{script_dir}/telegram_observer_config.json"):
ex.observers.append(
TelegramObserver.from_config(f"{script_dir}/telegram_observer_config.json")
)
@ex.config
def config():
# -- datas parameters
test_books = list
# -- common parameters
batch_size: int
# wether models should be saved or not
save_models: bool = True
# number of experiment repeats
runs_nb: int = 5
# -- retrieval heuristic
# pre-retrieval heuristic name
retrieval_heuristic: str = "random"
retrieval_heuristic_kwargs: dict
neural_retriever_path: str
# -- NER training parameters
# list of number of sents to test
sents_nb_list: list
# number of epochs for NER training
ner_epochs_nb: int = 2
# learning rate for NER training
ner_lr: float = 2e-5
@ex.automain
def main(
_run: Run,
test_books: List[str],
batch_size: int,
save_models: bool,
runs_nb: int,
retrieval_heuristic: str,
retrieval_heuristic_kwargs: dict,
neural_retriever_path: str,
sents_nb_list: List[int],
ner_epochs_nb: int,
ner_lr: float,
):
print_config(_run)
dataset = DekkerDataset()
test = []
train = []
for document_name, document in zip(dataset.documents_names, dataset.documents):
if document_name in test_books:
test.append(document)
else:
train.append(document)
test = NERDataset(test, dataset.tags, dataset.tokenizer)
train = NERDataset(train, dataset.tags, dataset.tokenizer)
# metrics matrices
# each matrix is of shape (runs_nb, folds_nb, sents_nb)
# these are used to record mean metrics across folds, runs...
precision_matrix = np.zeros((runs_nb, len(sents_nb_list)))
recall_matrix = np.zeros((runs_nb, len(sents_nb_list)))
f1_matrix = np.zeros((runs_nb, len(sents_nb_list)))
metrics_matrices = [
("precision", precision_matrix),
("recall", recall_matrix),
("f1", f1_matrix),
]
for run_i in range(runs_nb):
neural_retriever = NeuralContextRetriever(
neural_retriever_path,
retrieval_heuristic,
retrieval_heuristic_kwargs,
batch_size,
1,
)
ctx_train_set = neural_retriever(train, quiet=False)
# train ner model on train_set
ner_model = pretrained_bert_for_token_classification(
"bert-base-cased", train.tag_to_id
)
with RunLogScope(_run, f"run{run_i}.ner"):
ner_model = train_ner_model(
ner_model,
ctx_train_set,
ctx_train_set,
_run=_run,
epochs_nb=ner_epochs_nb,
batch_size=batch_size,
learning_rate=ner_lr,
quiet=False,
)
if save_models:
sacred_archive_huggingface_model(_run, ner_model, "ner_model") # type: ignore
for sents_nb_i, sents_nb in enumerate(sents_nb_list):
_run.log_scalar("gpu_usage", gpu_memory_usage())
neural_retriever.sents_nb = sents_nb
ctx_test_set = neural_retriever(test, quiet=False)
test_preds = predict(ner_model, ctx_test_set, quiet=True).tags
precision, recall, f1 = score_ner(test.sents(), test_preds)
_run.log_scalar(f"run{run_i}.test_precision", precision, step=sents_nb)
precision_matrix[run_i][sents_nb_i] = precision
_run.log_scalar(f"run{run_i}.test_recall", recall, step=sents_nb)
recall_matrix[run_i][sents_nb_i] = recall
_run.log_scalar(f"run{run_i}.test_f1", f1, step=sents_nb)
f1_matrix[run_i][sents_nb_i] = f1
# global mean metrics
for name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
sacred_log_series(
_run,
f"{op_name}_test_{name}",
op(matrix, axis=0), # (sents_nb)
steps=sents_nb_list,
)