@@ -154,13 +154,13 @@ python enjoy.py --algo algo_name --env env_id -f logs/ --exp-id 1 --load-last-ch
154
154
155
155
Upload model to hub (same syntax as for ` enjoy.py ` ):
156
156
```
157
- python -m rl_zoo .push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3 -m "Initial commit"
157
+ python -m rl_zoo3 .push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3 -m "Initial commit"
158
158
```
159
159
you can choose custom ` repo-name ` (default: ` {algo}-{env_id} ` ) by passing a ` --repo-name ` argument.
160
160
161
161
Download model from hub:
162
162
```
163
- python -m rl_zoo .load_from_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3
163
+ python -m rl_zoo3 .load_from_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3
164
164
```
165
165
166
166
## Hyperparameter yaml syntax
@@ -255,7 +255,7 @@ for multiple, specify a list:
255
255
256
256
` ` ` yaml
257
257
env_wrapper :
258
- - rl_zoo .wrappers.DoneOnSuccessWrapper :
258
+ - rl_zoo3 .wrappers.DoneOnSuccessWrapper :
259
259
reward_offset : 1.0
260
260
- sb3_contrib.common.wrappers.TimeFeatureWrapper
261
261
` ` `
@@ -279,7 +279,7 @@ Following the same syntax as env wrappers, you can also add custom callbacks to
279
279
280
280
` ` ` yaml
281
281
callback:
282
- - rl_zoo .callbacks.ParallelTrainCallback:
282
+ - rl_zoo3 .callbacks.ParallelTrainCallback:
283
283
gradient_steps: 256
284
284
` ` `
285
285
@@ -306,19 +306,19 @@ Note: if you want to pass a string, you need to escape it like that: `my_string:
306
306
Record 1000 steps with the latest saved model :
307
307
308
308
` ` `
309
- python -m rl_zoo .record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000
309
+ python -m rl_zoo3 .record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000
310
310
` ` `
311
311
312
312
Use the best saved model instead :
313
313
314
314
` ` `
315
- python -m rl_zoo .record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000 --load-best
315
+ python -m rl_zoo3 .record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000 --load-best
316
316
` ` `
317
317
318
318
Record a video of a checkpoint saved during training (here the checkpoint name is `rl_model_10000_steps.zip`) :
319
319
320
320
` ` `
321
- python -m rl_zoo .record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000 --load-checkpoint 10000
321
+ python -m rl_zoo3 .record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000 --load-checkpoint 10000
322
322
` ` `
323
323
324
324
# # Record a Video of a Training Experiment
@@ -328,18 +328,18 @@ Apart from recording videos of specific saved models, it is also possible to rec
328
328
Record 1000 steps for each checkpoint, latest and best saved models :
329
329
330
330
` ` `
331
- python -m rl_zoo .record_training --algo ppo --env CartPole-v1 -n 1000 -f logs --deterministic
331
+ python -m rl_zoo3 .record_training --algo ppo --env CartPole-v1 -n 1000 -f logs --deterministic
332
332
` ` `
333
333
334
334
The previous command will create a `mp4` file. To convert this file to `gif` format as well :
335
335
336
336
` ` `
337
- python -m rl_zoo .record_training --algo ppo --env CartPole-v1 -n 1000 -f logs --deterministic --gif
337
+ python -m rl_zoo3 .record_training --algo ppo --env CartPole-v1 -n 1000 -f logs --deterministic --gif
338
338
` ` `
339
339
340
340
# # Current Collection: 195+ Trained Agents!
341
341
342
- Final performance of the trained agents can be found in [`benchmark.md`](./benchmark.md). To compute them, simply run `python -m rl_zoo .benchmark`.
342
+ Final performance of the trained agents can be found in [`benchmark.md`](./benchmark.md). To compute them, simply run `python -m rl_zoo3 .benchmark`.
343
343
344
344
List and videos of trained agents can be found on our Huggingface page : https://huggingface.co/sb3
345
345
0 commit comments