Date: Fri, 26 Jun 2015 17:25:32 +0200
Subject: [PATCH 04/46] Remove AdvancedNoise This has moved to
https://github.com/DLR-SR/AdvancedNoise
---
.../Distributions/Bates/cumulative.mo | 86 ---
.../Distributions/Bates/density.mo | 67 ---
.../Distributions/Bates/package.mo | 50 --
.../Distributions/Bates/package.order | 3 -
.../Distributions/Bates/quantile.mo | 109 ----
.../Distributions/Discrete/cumulative.mo | 26 -
.../Distributions/Discrete/density.mo | 20 -
.../Distributions/Discrete/package.mo | 38 --
.../Distributions/Discrete/package.order | 3 -
.../Distributions/Discrete/quantile.mo | 41 --
Noise 1.0 Beta.1/Distributions/package.mo | 19 -
Noise 1.0 Beta.1/Distributions/package.order | 2 -
Noise 1.0 Beta.1/Examples/Correlations.mo | 49 --
Noise 1.0 Beta.1/Examples/Derivatives.mo | 233 --------
Noise 1.0 Beta.1/Examples/FrequencyShaping.mo | 62 ---
.../Examples/InterpolateRandomNumbers.mo | 68 ---
Noise 1.0 Beta.1/Examples/Interpolation.mo | 155 ------
.../Comparisons/FilterAndConvolution.mo | 101 ----
.../Comparisons/MinimumAndZeroPhase.mo | 9 -
.../Comparisons/SpaceAndTimeDomain.mo | 8 -
.../RailIrregularities/Comparisons/package.mo | 6 -
.../Comparisons/package.order | 3 -
.../Interpolator/package.order | 0
.../MinimumPhaseInterpolator/package.mo | 12 -
.../MinimumPhaseInterpolator/package.order | 0
.../RailIrregularities/Parts/Displacement.mo | 39 --
.../RailIrregularities/Parts/Irregularity.mo | 47 --
.../Parts/QuarterRailwayCar.mo | 92 ----
.../Parts/SimpleRailwayTrack.mo | 53 --
.../RailIrregularities/Parts/package.mo | 4 -
.../RailIrregularities/Parts/package.order | 4 -
.../RailIrregularities/TrainOnTrack.mo | 64 ---
.../ZeroPhaseInterpolator/package.mo | 12 -
.../ZeroPhaseInterpolator/package.order | 0
.../Examples/RailIrregularities/package.mo | 4 -
.../Examples/RailIrregularities/package.order | 5 -
Noise 1.0 Beta.1/Examples/SignalBasedNoise.mo | 69 ---
.../Examples/SignalInterpolation.mo | 94 ----
.../Utilities/RailIrregularities/package.mo | 52 --
.../RailIrregularities/package.order | 0
.../Examples/Utilities/package.order | 1 -
Noise 1.0 Beta.1/Examples/package.mo | 4 -
Noise 1.0 Beta.1/Examples/package.order | 8 -
Noise 1.0 Beta.1/Generators/package.mo | 9 -
Noise 1.0 Beta.1/Generators/package.order | 0
.../Interpolators/Constant/package.mo | 74 ---
.../Interpolators/Constant/package.order | 1 -
.../Interpolators/FirstOrder/package.mo | 57 --
.../Interpolators/FirstOrder/package.order | 5 -
.../Interpolators/Linear/der_interpolate.mo | 63 ---
.../Interpolators/Linear/package.mo | 88 ---
.../Interpolators/Linear/package.order | 2 -
.../SmoothIdealLowPass/der_interpolate.mo | 54 --
.../SmoothIdealLowPass/der_kernel_offset.mo | 37 --
.../SmoothIdealLowPass/kernel.mo | 37 --
.../SmoothIdealLowPass/package.mo | 150 ------
.../SmoothIdealLowPass/package.order | 5 -
.../StepResponse/kernelVariance.mo | 6 -
.../Interpolators/StepResponse/package.mo | 53 --
.../Interpolators/StepResponse/package.order | 7 -
.../Interpolators/StepResponse/trapz.mo | 8 -
.../Interfaces/PartialInterpolator/package.mo | 114 ----
.../PartialInterpolator/package.order | 6 -
.../der_interpolate.mo | 30 --
.../PartialInterpolatorWithKernel/package.mo | 108 ----
.../package.order | 5 -
.../Utilities/Interfaces/package.mo | 5 -
.../Utilities/Interfaces/package.order | 3 -
.../Utilities/Interfaces/partialKernel.mo | 5 -
.../Interpolators/Utilities/package.mo | 4 -
.../Interpolators/Utilities/package.order | 1 -
Noise 1.0 Beta.1/Interpolators/package.mo | 10 -
Noise 1.0 Beta.1/Interpolators/package.order | 6 -
Noise 1.0 Beta.1/Math/binomial.mo | 11 -
Noise 1.0 Beta.1/Math/factorial.mo | 13 -
Noise 1.0 Beta.1/Math/package.mo | 13 -
Noise 1.0 Beta.1/Math/package.order | 2 -
.../Plots/Distributions/Discrete.mo | 25 -
Noise 1.0 Beta.1/Plots/Distributions/bates.mo | 31 --
.../Plots/Distributions/normal.mo | 31 --
.../Plots/Distributions/package.mo | 5 -
.../Plots/Distributions/package.order | 5 -
.../Plots/Distributions/uniform.mo | 31 --
.../Plots/Distributions/weibull.mo | 30 --
.../Plots/TruncatedDistributions/normal.mo | 28 -
.../Plots/TruncatedDistributions/package.mo | 8 -
.../TruncatedDistributions/package.order | 3 -
.../Plots/TruncatedDistributions/uniform.mo | 31 --
.../Plots/TruncatedDistributions/weibull.mo | 28 -
Noise 1.0 Beta.1/Plots/package.mo | 7 -
Noise 1.0 Beta.1/Plots/package.order | 3 -
Noise 1.0 Beta.1/Plots/special.mo | 35 --
.../Sources/ColoredSignalBasedNoise.mo | 13 -
Noise 1.0 Beta.1/Sources/SignalBasedNoise.mo | 455 ----------------
Noise 1.0 Beta.1/Sources/TimeBasedNoise.mo | 500 ------------------
Noise 1.0 Beta.1/Sources/package.mo | 11 -
Noise 1.0 Beta.1/Sources/package.order | 3 -
Noise 1.0 Beta.1/Statistics/Correlation.mo | 75 ---
.../Statistics/CorrelationTest.mo | 59 ---
.../Statistics/SignificanceTest.mo | 27 -
Noise 1.0 Beta.1/Statistics/package.mo | 19 -
Noise 1.0 Beta.1/Statistics/package.order | 3 -
Noise 1.0 Beta.1/Test/densities.mo | 30 --
Noise 1.0 Beta.1/Test/package.order | 3 -
Noise 1.0 Beta.1/Test/quantiles.mo | 34 --
Noise 1.0 Beta.1/Test/special.mo | 35 --
.../Bates/cumulative.mo | 49 --
.../TruncatedDistributions/Bates/density.mo | 40 --
.../TruncatedDistributions/Bates/package.mo | 50 --
.../Bates/package.order | 3 -
.../TruncatedDistributions/Bates/quantile.mo | 59 ---
.../Discrete/cumulative.mo | 35 --
.../Discrete/density.mo | 20 -
.../Discrete/package.mo | 38 --
.../Discrete/package.order | 3 -
.../Discrete/quantile.mo | 42 --
.../TruncatedDistributions/package.mo | 14 -
.../TruncatedDistributions/package.order | 2 -
Noise 1.0 Beta.1/libraryinfo.mos | 17 -
Noise 1.0 Beta.1/package.mo | 24 -
Noise 1.0 Beta.1/package.order | 9 -
121 files changed, 4687 deletions(-)
delete mode 100644 Noise 1.0 Beta.1/Distributions/Bates/cumulative.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/Bates/density.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/Bates/package.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/Bates/package.order
delete mode 100644 Noise 1.0 Beta.1/Distributions/Bates/quantile.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/Discrete/cumulative.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/Discrete/density.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/Discrete/package.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/Discrete/package.order
delete mode 100644 Noise 1.0 Beta.1/Distributions/Discrete/quantile.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/package.mo
delete mode 100644 Noise 1.0 Beta.1/Distributions/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/Correlations.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/Derivatives.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/FrequencyShaping.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/InterpolateRandomNumbers.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/Interpolation.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/FilterAndConvolution.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/MinimumAndZeroPhase.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/SpaceAndTimeDomain.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Interpolator/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/MinimumPhaseInterpolator/package.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/MinimumPhaseInterpolator/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Displacement.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Irregularity.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/QuarterRailwayCar.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/SimpleRailwayTrack.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/TrainOnTrack.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/ZeroPhaseInterpolator/package.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/ZeroPhaseInterpolator/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/package.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/RailIrregularities/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/SignalBasedNoise.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/SignalInterpolation.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/Utilities/RailIrregularities/package.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/Utilities/RailIrregularities/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/Utilities/package.order
delete mode 100644 Noise 1.0 Beta.1/Examples/package.mo
delete mode 100644 Noise 1.0 Beta.1/Examples/package.order
delete mode 100644 Noise 1.0 Beta.1/Generators/package.mo
delete mode 100644 Noise 1.0 Beta.1/Generators/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Constant/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Constant/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/FirstOrder/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/FirstOrder/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Linear/der_interpolate.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Linear/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Linear/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_interpolate.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_kernel_offset.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/kernel.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/StepResponse/kernelVariance.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/StepResponse/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/StepResponse/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/StepResponse/trapz.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/der_interpolate.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/partialKernel.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/Utilities/package.order
delete mode 100644 Noise 1.0 Beta.1/Interpolators/package.mo
delete mode 100644 Noise 1.0 Beta.1/Interpolators/package.order
delete mode 100644 Noise 1.0 Beta.1/Math/binomial.mo
delete mode 100644 Noise 1.0 Beta.1/Math/factorial.mo
delete mode 100644 Noise 1.0 Beta.1/Math/package.mo
delete mode 100644 Noise 1.0 Beta.1/Math/package.order
delete mode 100644 Noise 1.0 Beta.1/Plots/Distributions/Discrete.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/Distributions/bates.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/Distributions/normal.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/Distributions/package.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/Distributions/package.order
delete mode 100644 Noise 1.0 Beta.1/Plots/Distributions/uniform.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/Distributions/weibull.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/TruncatedDistributions/normal.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.order
delete mode 100644 Noise 1.0 Beta.1/Plots/TruncatedDistributions/uniform.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/TruncatedDistributions/weibull.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/package.mo
delete mode 100644 Noise 1.0 Beta.1/Plots/package.order
delete mode 100644 Noise 1.0 Beta.1/Plots/special.mo
delete mode 100644 Noise 1.0 Beta.1/Sources/ColoredSignalBasedNoise.mo
delete mode 100644 Noise 1.0 Beta.1/Sources/SignalBasedNoise.mo
delete mode 100644 Noise 1.0 Beta.1/Sources/TimeBasedNoise.mo
delete mode 100644 Noise 1.0 Beta.1/Sources/package.mo
delete mode 100644 Noise 1.0 Beta.1/Sources/package.order
delete mode 100644 Noise 1.0 Beta.1/Statistics/Correlation.mo
delete mode 100644 Noise 1.0 Beta.1/Statistics/CorrelationTest.mo
delete mode 100644 Noise 1.0 Beta.1/Statistics/SignificanceTest.mo
delete mode 100644 Noise 1.0 Beta.1/Statistics/package.mo
delete mode 100644 Noise 1.0 Beta.1/Statistics/package.order
delete mode 100644 Noise 1.0 Beta.1/Test/densities.mo
delete mode 100644 Noise 1.0 Beta.1/Test/package.order
delete mode 100644 Noise 1.0 Beta.1/Test/quantiles.mo
delete mode 100644 Noise 1.0 Beta.1/Test/special.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Bates/cumulative.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Bates/density.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.order
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Bates/quantile.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Discrete/cumulative.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Discrete/density.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.order
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/Discrete/quantile.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/package.mo
delete mode 100644 Noise 1.0 Beta.1/TruncatedDistributions/package.order
delete mode 100644 Noise 1.0 Beta.1/libraryinfo.mos
delete mode 100644 Noise 1.0 Beta.1/package.mo
delete mode 100644 Noise 1.0 Beta.1/package.order
diff --git a/Noise 1.0 Beta.1/Distributions/Bates/cumulative.mo b/Noise 1.0 Beta.1/Distributions/Bates/cumulative.mo
deleted file mode 100644
index 54417184..00000000
--- a/Noise 1.0 Beta.1/Distributions/Bates/cumulative.mo
+++ /dev/null
@@ -1,86 +0,0 @@
-within Noise.Distributions.Bates;
-function cumulative "Cumulative distribution function of Bates distribution"
- import Noise.Math.factorial;
- import Noise.Math.binomial;
- extends Modelica_Noise.Math.Distributions.Interfaces.partialCumulative;
- input Real y_min=0 "Lower limit of band" annotation (Dialog);
- input Real y_max=1 "Upper limit of band" annotation (Dialog);
- input Integer n=12 "Number of uniform random values" annotation (Dialog);
-protected
- Real x "Abbreviation into the interval (0,1)";
-algorithm
-
- // This is the formula for the PDF:
- // pdf = n^n /(n-1)!*sum( (-1)^k * binomial(n,k) * (x-k/n)^(n-1) , k = 0..floor(n*x))
-
- // The integral is actually only once over x
- // cdf = n^(n-1)/(n-1)!*sum( (-1)^k * binomial(n,k) * (x-k/n)^( n ) , k = 0..floor(n*x))
-
- // Map the scaled distribution to the stable region
- x := (u - y_min) / (y_max - y_min);
- if u > 0.5*(y_min+y_max) then
- x := 1 - x;
- end if;
-
- // Only calculate a number within the boundary
- y := 0;
- if u >= y_min and u <= y_max then
-
- // Loop over k = 0 .. floor(n*x)
- for k in 0:integer(n*x) loop
- // Sum up the inner part
- y := y + (-1)^k * binomial(n,k) * (x-k/n)^(n);
- end for;
- // Multiply by the outer factor
- y := n^(n-1) / factorial(n-1) * y;
-
- elseif u > y_max then
- y := 1;
- end if;
-
- // Invert the CDF for x > 0.5
- if u > 0.5*(y_min+y_max) and u <= y_max then
- y := 1 - y;
- end if;
- annotation (Inline=true,Documentation(info="
-Syntax
-
-Bates.cumulative(u, y_min=0, y_max=1, n=12);
-
-
-Description
-
-This function computes the cumulative distribution function
-according to a Bates distribution (= mean of n uniform distributions).
-The returned value y is in the range:
-
-
-
-0 ≤ y ≤ 1
-
-
-
-Plot of the function:
-
-
-
-
-
-
-
-For more details, see
-Wikipedia.
-
-
-Example
-
- cumulative(0,-3,3,12) // = 0.5
-
-
-See also
-
-Bates.density,
-Bates.quantile.
-
-"));
-end cumulative;
diff --git a/Noise 1.0 Beta.1/Distributions/Bates/density.mo b/Noise 1.0 Beta.1/Distributions/Bates/density.mo
deleted file mode 100644
index 23d95223..00000000
--- a/Noise 1.0 Beta.1/Distributions/Bates/density.mo
+++ /dev/null
@@ -1,67 +0,0 @@
-within Noise.Distributions.Bates;
-function density "Density of Bates distribution"
- import Noise.Math.factorial;
- import Noise.Math.binomial;
- extends Modelica_Noise.Math.Distributions.Interfaces.partialDensity;
- input Real y_min=0 "Lower limit of band" annotation (Dialog);
- input Real y_max=1 "Upper limit of band" annotation (Dialog);
- input Integer n=12 "Number of uniform random values" annotation (Dialog);
-protected
- Real x "Abbreviation into the interval (0,1)";
-algorithm
- // This is the formula for the PDF:
- // pdf = n^n/(n-1)!*sum( (-1)^k * binomial(n,k) * (x-k/n)^(n-1) , k = 0..floor(n*x))
-
- // Map the scaled distribution to the stable region
- x := (u - y_min) / (y_max - y_min);
- if u > 0.5*(y_min+y_max) then
- x := 1 - x;
- end if;
-
- // Only calculate a number within the boundary
- y := 0;
- if u >= y_min and u <= y_max then
-
- // Loop over k = 0 .. floor(n*x)
- for k in 0:integer(n*x) loop
- // Sum up the inner part
- y := y + (-1)^k * binomial(n,k) * (x-k/n)^(n-1);
- end for;
- // Multiply by the outer factor
- y := n^(n)/3 / factorial(n-1) * y;
-
- end if;
-
- annotation (Inline=true,Documentation(info="
-Syntax
-
-Bates.density(u, y_min=0, y_max=1, n=12);
-
-
-Description
-
-This function computes the probability density function according to a Bates distribution
-(= mean of n uniform distributions). Plot of the function:
-
-
-
-
-
-
-
-For more details, see
-Wikipedia.
-
-
-Example
-
- density(0, -3, 3, 12) // = 4.7271067821068185
-
-
-See also
-
-Bates.cumulative,
-Bates.quantile.
-
-"));
-end density;
diff --git a/Noise 1.0 Beta.1/Distributions/Bates/package.mo b/Noise 1.0 Beta.1/Distributions/Bates/package.mo
deleted file mode 100644
index 1e46e371..00000000
--- a/Noise 1.0 Beta.1/Distributions/Bates/package.mo
+++ /dev/null
@@ -1,50 +0,0 @@
-within Noise.Distributions;
-package Bates "Library of Bates distribution functions (= mean of n uniform distributions)"
- extends Modelica.Icons.Package;
-
-
-annotation (Icon(coordinateSystem(preserveAspectRatio=false, extent={{
- -100,-100},{100,100}}), graphics={
- Line(
- points={{-70,-63.953},{-66.5,-63.8975},{-63,-63.7852},{-59.5,-63.5674},
- {-56,-63.1631},{-52.5,-62.4442},{-49,-61.2213},{-45.5,-59.2318},{-42,
- -56.1385},{-38.5,-51.5468},{-35,-45.0467},{-31.5,-36.2849},{-28,-25.0617},
- {-24.5,-11.4388},{-21,4.1682},{-17.5,20.9428},{-14,37.695},{-10.5,
- 52.9771},{-7,65.2797},{-3.5,73.2739},{0,76.047},{3.5,73.2739},{7,65.2797},
- {10.5,52.9771},{14,37.695},{17.5,20.9428},{21,4.1682},{24.5,-11.4388},
- {28,-25.0617},{31.5,-36.2849},{35,-45.0467},{38.5,-51.5468},{42,-56.1385},
- {45.5,-59.2318},{49,-61.2213},{52.5,-62.4442},{56,-63.1631},{59.5,
- -63.5674},{63,-63.7852},{66.5,-63.8975},{70,-63.953}},
- color={0,0,0},
- smooth=Smooth.Bezier)}), Documentation(info="
-
-This package provides
-
-
-- probability density function (= derivative of cumulative distribution function),
-- cumulative distribution function, and
-- quantile (= inverse cumulative distribution function).
-
-
-of the Bates distribution (= mean of n uniform
-distributions). Examples:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end Bates;
diff --git a/Noise 1.0 Beta.1/Distributions/Bates/package.order b/Noise 1.0 Beta.1/Distributions/Bates/package.order
deleted file mode 100644
index ddc9fbd9..00000000
--- a/Noise 1.0 Beta.1/Distributions/Bates/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-density
-cumulative
-quantile
diff --git a/Noise 1.0 Beta.1/Distributions/Bates/quantile.mo b/Noise 1.0 Beta.1/Distributions/Bates/quantile.mo
deleted file mode 100644
index f8974d7e..00000000
--- a/Noise 1.0 Beta.1/Distributions/Bates/quantile.mo
+++ /dev/null
@@ -1,109 +0,0 @@
-within Noise.Distributions.Bates;
-function quantile "Quantile of Bates distribution"
- extends Modelica_Noise.Math.Distributions.Interfaces.partialQuantile;
- input Real y_min=0 "Lower limit of band" annotation (Dialog);
- input Real y_max=1 "Upper limit of band" annotation (Dialog);
- input Integer n=12 "Number of uniform random values" annotation (Dialog);
-protected
- Real tol = 1e-6 "Required acuracy of the quantile";
- Real y_l, y_m, y_h "Random values during search";
- Real p_l, p_m, p_h "Probabilities during search";
- Integer i "A counter for debugging";
-algorithm
-
- // Return the limits, if the probability is not in (0,1)
- if u > 1 then
- y := y_max;
- elseif u < 0 then
- y := y_min;
-
- // Iterate the value, because we have not found an inverse CDF
- else
-
- // Initialize variables
- i := 0;
- y_l := y_min;
- y_h := y_max;
- p_l := cumulative(y_l, y_min, y_max, n);
- p_h := cumulative(y_h, y_min, y_max, n);
-
- // Keep iterating as long as both estimations are not close enough
- while abs(u-p_l) > tol and abs(u-p_h) > tol loop
- i := i + 1;
-
- // Calculate an intermediate point
- y_m := y_l + (y_h-y_l)/(p_h-p_l)*(u-p_l);
- p_m := cumulative(y_m, y_min, y_max, n);
-
- // Select narrower boundaries than before
- if p_m >= u then
- y_h := y_m;
- p_h := p_m;
- end if;
- if p_m <= u then
- y_l := y_m;
- p_l := p_m;
- end if;
- end while;
-
- // Select correct boundary
- if abs(u-p_l) < abs(u-p_h) then
- y := y_l;
- else
- y := y_h;
- end if;
- end if;
-
- annotation (Inline=true,Documentation(info="
-Syntax
-
-Bates.quantile(u, y_min=0, y_max=1, n=12);
-
-
-Description
-
-This function computes the inverse cumulative distribution function (= quantile) according to a Bates
-distribution (= mean of n uniform distributions). Input argument u must be in the range:
-
-
-
-
-0 ≤ u ≤ 1
-
-
-
-
-The returned number y is in the range:
-
-
-
-
-y_min ≤ y ≤ y_max
-
-
-
-
-Plot of the function:
-
-
-
-
-
-
-
-For more details, see
-Wikipedia.
-
-
-Example
-
- quantile(0.5,-3,3,12) // = -7.450831063238184E-010
-
-
-See also
-
-Bates.density,
-Bates.cumulative.
-
-"));
-end quantile;
diff --git a/Noise 1.0 Beta.1/Distributions/Discrete/cumulative.mo b/Noise 1.0 Beta.1/Distributions/Discrete/cumulative.mo
deleted file mode 100644
index 38e0e893..00000000
--- a/Noise 1.0 Beta.1/Distributions/Discrete/cumulative.mo
+++ /dev/null
@@ -1,26 +0,0 @@
-within Noise.Distributions.Discrete;
-function cumulative "Cumulative distribution function of discrete distribution"
- extends Modelica_Noise.Math.Distributions.Interfaces.partialCumulative;
- input Real x[:] = {0,1} "Discrete values to be chosen from" annotation(Dialog);
- input Real p[size(x,1)] = ones(size(x,1))/size(x,1)
- "The probabilities of the discrete values" annotation(Dialog);
-algorithm
- y := 0;
- for i in 1:size(x,1) loop
- if u >= x[i] then
- y := y + p[i];
- end if;
- end for;
- y := y / sum(p);
-
- annotation (Inline=true,Documentation(info="
-
-This function returns the cumulative distribution function according to a uniform distribution in a band.
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end cumulative;
diff --git a/Noise 1.0 Beta.1/Distributions/Discrete/density.mo b/Noise 1.0 Beta.1/Distributions/Discrete/density.mo
deleted file mode 100644
index b734b831..00000000
--- a/Noise 1.0 Beta.1/Distributions/Discrete/density.mo
+++ /dev/null
@@ -1,20 +0,0 @@
-within Noise.Distributions.Discrete;
-function density "Density of discrete distribution (undefined!)"
- extends Modelica_Noise.Math.Distributions.Interfaces.partialDensity;
- input Real x[:] = {0,1} "Discrete values to be chosen from" annotation(Dialog);
- input Real p[size(x,1)] = ones(size(x,1))/size(x,1)
- "The probabilities of the discrete values" annotation(Dialog);
-algorithm
- assert(false, "The density of the discrete distribution is not defined.");
-
- annotation (Inline=true,Documentation(info="
-
-This function returns the probability density according to a uniform distribution in a band.
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end density;
diff --git a/Noise 1.0 Beta.1/Distributions/Discrete/package.mo b/Noise 1.0 Beta.1/Distributions/Discrete/package.mo
deleted file mode 100644
index b74ce787..00000000
--- a/Noise 1.0 Beta.1/Distributions/Discrete/package.mo
+++ /dev/null
@@ -1,38 +0,0 @@
-within Noise.Distributions;
-package Discrete "Library of discrete distribution functions"
- extends Modelica.Icons.Package;
-
-
-annotation (Icon(coordinateSystem(preserveAspectRatio=false, extent={{
- -100,-100},{100,100}}), graphics={
- Line(
- points={{-70,-60},{-50,-60},{-50,40},{-50,-60},{-20,-60},{-20,12},{-20,
- -60},{0,-60},{0,80},{0,-60},{30,-60},{30,50},{30,-60},{62,-60},{62,
- 14},{62,-60},{70,-60}},
- color={0,0,0}),
- Ellipse(
- extent={{-54,44},{-46,36}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{-24,18},{-16,10}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{-4,84},{4,76}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{26,54},{34,46}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{58,18},{66,10}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid)}));
-end Discrete;
diff --git a/Noise 1.0 Beta.1/Distributions/Discrete/package.order b/Noise 1.0 Beta.1/Distributions/Discrete/package.order
deleted file mode 100644
index ddc9fbd9..00000000
--- a/Noise 1.0 Beta.1/Distributions/Discrete/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-density
-cumulative
-quantile
diff --git a/Noise 1.0 Beta.1/Distributions/Discrete/quantile.mo b/Noise 1.0 Beta.1/Distributions/Discrete/quantile.mo
deleted file mode 100644
index 2717cb35..00000000
--- a/Noise 1.0 Beta.1/Distributions/Discrete/quantile.mo
+++ /dev/null
@@ -1,41 +0,0 @@
-within Noise.Distributions.Discrete;
-function quantile
- "Quantile of discrete distribution (= inverse cumulative distribution function)"
- extends Modelica_Noise.Math.Distributions.Interfaces.partialQuantile;
- input Real x[:] = {0,1} "Discrete values to be chosen from" annotation(Dialog);
- input Real p[size(x,1)] = ones(size(x,1))/size(x,1)
- "The probabilities of the discrete values" annotation(Dialog);
-protected
- Integer iSorted[size(x,1)] "Sorted indices";
- Real xSorted[size(x,1)] "Sorted values of x";
- Real pSorted[size(x,1)] "Sorted values of p";
- Real cdf;
-algorithm
- (xSorted, iSorted) := Modelica.Math.Vectors.sort(x);
-
- cdf := 0;
- for i in 1:size(x,1) loop
- if u > cdf/sum(p) then
- y := xSorted[i];
- end if;
- cdf := cdf + p[iSorted[i]];
- end for;
-
- annotation (Inline=true,Documentation(info="
-
-This function returns a number according to a uniform distribution in a band.
-This means the returned number is in the range:
-
-
-
-
-y_min ≤ y ≤ y_max
-
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end quantile;
diff --git a/Noise 1.0 Beta.1/Distributions/package.mo b/Noise 1.0 Beta.1/Distributions/package.mo
deleted file mode 100644
index 46c7358d..00000000
--- a/Noise 1.0 Beta.1/Distributions/package.mo
+++ /dev/null
@@ -1,19 +0,0 @@
-within Noise;
-package Distributions "Additional distributions"
- extends Modelica.Icons.Package;
-
-
- annotation (Icon(graphics={
- Line(
- points={{-70,-65.953},{-66.5,-65.8975},{-63,-65.7852},{-59.5,-65.5674},
- {-56,-65.1631},{-52.5,-64.4442},{-49,-63.2213},{-45.5,-61.2318},{-42,
- -58.1385},{-38.5,-53.5468},{-35,-47.0467},{-31.5,-38.2849},{-28,-27.0617},
- {-24.5,-13.4388},{-21,2.1682},{-17.5,18.9428},{-14,35.695},{-10.5,
- 50.9771},{-7,63.2797},{-3.5,71.2739},{0,74.047},{3.5,71.2739},{7,63.2797},
- {10.5,50.9771},{14,35.695},{17.5,18.9428},{21,2.1682},{24.5,-13.4388},
- {28,-27.0617},{31.5,-38.2849},{35,-47.0467},{38.5,-53.5468},{42,-58.1385},
- {45.5,-61.2318},{49,-63.2213},{52.5,-64.4442},{56,-65.1631},{59.5,
- -65.5674},{63,-65.7852},{66.5,-65.8975},{70,-65.953}},
- color={0,0,0},
- smooth=Smooth.Bezier)}));
-end Distributions;
diff --git a/Noise 1.0 Beta.1/Distributions/package.order b/Noise 1.0 Beta.1/Distributions/package.order
deleted file mode 100644
index 01c36113..00000000
--- a/Noise 1.0 Beta.1/Distributions/package.order
+++ /dev/null
@@ -1,2 +0,0 @@
-Bates
-Discrete
diff --git a/Noise 1.0 Beta.1/Examples/Correlations.mo b/Noise 1.0 Beta.1/Examples/Correlations.mo
deleted file mode 100644
index d9879ec0..00000000
--- a/Noise 1.0 Beta.1/Examples/Correlations.mo
+++ /dev/null
@@ -1,49 +0,0 @@
-within Noise.Examples;
-model Correlations
- extends Modelica.Icons.Example;
-
- Sources.TimeBasedNoise noise1(
- samplePeriod=0.01,
- y_min=0,
- y_max=1,
- useAutomaticLocalSeed=false,
- fixedLocalSeed=11)
- annotation (Placement(transformation(extent={{-80,60},{-60,80}})));
- inner Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed
- annotation (Placement(transformation(extent={{60,60},{80,80}})));
- Sources.TimeBasedNoise noise2(
- samplePeriod=0.01,
- y_min=0,
- y_max=1,
- useAutomaticLocalSeed=false)
- annotation (Placement(transformation(extent={{-80,20},{-60,40}})));
- Statistics.CorrelationTest crossCorrelationTest
- annotation (Placement(transformation(extent={{-20,40},{0,60}})));
- Sources.TimeBasedNoise noise3(
- samplePeriod=0.01,
- y_min=0,
- y_max=1,
- useAutomaticLocalSeed=false)
- annotation (Placement(transformation(extent={{-80,-20},{-60,0}})));
- Statistics.CorrelationTest autoCorrelationTest(correlation(delta_t=0.02))
- annotation (Placement(transformation(extent={{-20,0},{0,20}})));
-equation
- connect(crossCorrelationTest.u1, noise1.y) annotation (Line(
- points={{-22,56},{-40,56},{-40,70},{-59,70}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(crossCorrelationTest.u2, noise2.y) annotation (Line(
- points={{-22,44},{-40,44},{-40,30},{-59,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(autoCorrelationTest.u1, noise2.y) annotation (Line(
- points={{-22,16},{-40,16},{-40,30},{-59,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(autoCorrelationTest.u2, noise3.y) annotation (Line(
- points={{-22,4},{-40,4},{-40,-10},{-59,-10}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics));
-end Correlations;
diff --git a/Noise 1.0 Beta.1/Examples/Derivatives.mo b/Noise 1.0 Beta.1/Examples/Derivatives.mo
deleted file mode 100644
index ca6bd1ed..00000000
--- a/Noise 1.0 Beta.1/Examples/Derivatives.mo
+++ /dev/null
@@ -1,233 +0,0 @@
-within Noise.Examples;
-model Derivatives "Tests derivatives of the random numbers"
- extends Modelica.Icons.Example;
- inner Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed(useAutomaticSeed=
- false) annotation (Placement(transformation(extent={{60,60},{80,80}})));
- Sources.TimeBasedNoise uniformLinear(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation = Interpolators.Linear)
- annotation (Placement(transformation(extent={{-80,70},{-60,90}})));
- Sources.TimeBasedNoise uniformSmooth(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation = Interpolators.SmoothIdealLowPass)
- annotation (Placement(transformation(extent={{-40,70},{-20,90}})));
- Sources.TimeBasedNoise normalLinear(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation = Interpolators.Linear)
- annotation (Placement(transformation(extent={{-80,40},{-60,60}})));
- Sources.TimeBasedNoise normalSmooth(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation = Interpolators.SmoothIdealLowPass)
- annotation (Placement(transformation(extent={{-40,40},{-20,60}})));
- Sources.TimeBasedNoise weibullLinear(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation = Interpolators.Linear)
- annotation (Placement(transformation(extent={{-80,10},{-60,30}})));
- Sources.TimeBasedNoise weibullSmooth(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation = Interpolators.SmoothIdealLowPass)
- annotation (Placement(transformation(extent={{-40,10},{-20,30}})));
- Sources.SignalBasedNoise uniformLinear1(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation =
- Interpolators.Linear,
- useTime=false)
- annotation (Placement(transformation(extent={{20,-30},{40,-10}})));
- Sources.SignalBasedNoise uniformSmooth1(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation =
- Interpolators.SmoothIdealLowPass,
- useTime=false)
- annotation (Placement(transformation(extent={{60,-30},{80,-10}})));
- Sources.SignalBasedNoise normalLinear1(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation =
- Interpolators.Linear,
- useTime=false)
- annotation (Placement(transformation(extent={{20,-60},{40,-40}})));
- Sources.SignalBasedNoise normalSmooth1(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation =
- Interpolators.SmoothIdealLowPass,
- useTime=false)
- annotation (Placement(transformation(extent={{60,-60},{80,-40}})));
- Sources.SignalBasedNoise weibullLinear1(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation =
- Interpolators.Linear,
- useTime=false)
- annotation (Placement(transformation(extent={{20,-90},{40,-70}})));
- Sources.SignalBasedNoise weibullSmooth1(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- redeclare function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile,
- redeclare package interpolation =
- Interpolators.SmoothIdealLowPass,
- useTime=false)
- annotation (Placement(transformation(extent={{60,-90},{80,-70}})));
- Modelica.Blocks.Sources.Sine sine(freqHz=0.3)
- annotation (Placement(transformation(extent={{-16,-10},{4,10}})));
- Modelica.Blocks.Continuous.Der der1
- annotation (Placement(transformation(extent={{-52,16},{-44,24}})));
- Modelica.Blocks.Continuous.Der der2
- annotation (Placement(transformation(extent={{-52,46},{-44,54}})));
- Modelica.Blocks.Continuous.Der der3
- annotation (Placement(transformation(extent={{-52,76},{-44,84}})));
- Modelica.Blocks.Continuous.Der der4
- annotation (Placement(transformation(extent={{-12,76},{-4,84}})));
- Modelica.Blocks.Continuous.Der der5
- annotation (Placement(transformation(extent={{-12,46},{-4,54}})));
- Modelica.Blocks.Continuous.Der der6
- annotation (Placement(transformation(extent={{-12,16},{-4,24}})));
- Modelica.Blocks.Continuous.Der der7
- annotation (Placement(transformation(extent={{46,-24},{54,-16}})));
- Modelica.Blocks.Continuous.Der der8
- annotation (Placement(transformation(extent={{46,-54},{54,-46}})));
- Modelica.Blocks.Continuous.Der der9
- annotation (Placement(transformation(extent={{46,-84},{54,-76}})));
- Modelica.Blocks.Continuous.Der der10
- annotation (Placement(transformation(extent={{86,-24},{94,-16}})));
- Modelica.Blocks.Continuous.Der der11
- annotation (Placement(transformation(extent={{86,-54},{94,-46}})));
- Modelica.Blocks.Continuous.Der der12
- annotation (Placement(transformation(extent={{86,-84},{94,-76}})));
-equation
- connect(sine.y, uniformLinear1.u) annotation (Line(
- points={{5,0},{10,0},{10,-20},{18,-20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(sine.y, normalLinear1.u) annotation (Line(
- points={{5,0},{10,0},{10,-50},{18,-50}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(sine.y, weibullLinear1.u) annotation (Line(
- points={{5,0},{10,0},{10,-80},{18,-80}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(sine.y, uniformSmooth1.u) annotation (Line(
- points={{5,0},{50,0},{50,-20},{58,-20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(sine.y, normalSmooth1.u) annotation (Line(
- points={{5,0},{50,0},{50,-50},{58,-50}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(sine.y, weibullSmooth1.u) annotation (Line(
- points={{5,0},{50,0},{50,-80},{58,-80}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(weibullLinear.y, der1.u) annotation (Line(
- points={{-59,20},{-52.8,20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(normalLinear.y, der2.u) annotation (Line(
- points={{-59,50},{-52.8,50}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(uniformLinear.y, der3.u) annotation (Line(
- points={{-59,80},{-52.8,80}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(uniformSmooth.y, der4.u) annotation (Line(
- points={{-19,80},{-12.8,80}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(normalSmooth.y, der5.u) annotation (Line(
- points={{-19,50},{-12.8,50}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(weibullSmooth.y, der6.u) annotation (Line(
- points={{-19,20},{-12.8,20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(uniformLinear1.y, der7.u) annotation (Line(
- points={{41,-20},{45.2,-20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(normalLinear1.y, der8.u) annotation (Line(
- points={{41,-50},{45.2,-50}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(weibullLinear1.y, der9.u) annotation (Line(
- points={{41,-80},{45.2,-80}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(uniformSmooth1.y, der10.u) annotation (Line(
- points={{81,-20},{85.2,-20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(normalSmooth1.y, der11.u) annotation (Line(
- points={{81,-50},{85.2,-50}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(weibullSmooth1.y, der12.u) annotation (Line(
- points={{81,-80},{85.2,-80}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics));
-end Derivatives;
diff --git a/Noise 1.0 Beta.1/Examples/FrequencyShaping.mo b/Noise 1.0 Beta.1/Examples/FrequencyShaping.mo
deleted file mode 100644
index e16a5226..00000000
--- a/Noise 1.0 Beta.1/Examples/FrequencyShaping.mo
+++ /dev/null
@@ -1,62 +0,0 @@
-within Noise.Examples;
-model FrequencyShaping
- "Demonstrates shaping of the frequency content with a convolution filter"
- extends Modelica.Icons.Example;
- Noise.Sources.TimeBasedNoise filteredNoise(
- useAutomaticLocalSeed=false,
- y_min=-1,
- y_max=3,
- sampleFactor=10,
- redeclare package interpolation = Noise.Interpolators.FirstOrder,
- samplePeriod=0.1)
- annotation (Placement(transformation(extent={{-60,40},{-40,60}})));
- inner Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed(useAutomaticSeed=
- false) annotation (Placement(transformation(extent={{60,60},{80,80}})));
- Noise.Sources.TimeBasedNoise rawNoise(
- useAutomaticLocalSeed=false,
- y_min=-1,
- y_max=3,
- sampleFactor=10,
- samplePeriod=filteredNoise.samplePeriod)
- annotation (Placement(transformation(extent={{-60,-40},{-40,-20}})));
- Modelica.Blocks.Continuous.FirstOrder firstOrder(
- k=filteredNoise.interpolation.k,
- T=filteredNoise.interpolation.T,
- initType=Modelica.Blocks.Types.Init.InitialState)
- annotation (Placement(transformation(extent={{-20,-40},{0,-20}})));
- Modelica.Blocks.Continuous.Der derConvolution
- annotation (Placement(transformation(extent={{20,40},{40,60}})));
- Modelica.Blocks.Continuous.Der derFilter
- annotation (Placement(transformation(extent={{20,-40},{40,-20}})));
- Noise.Sources.TimeBasedNoise tabulatedNoise(
- useAutomaticLocalSeed=false,
- y_min=-1,
- y_max=3,
- redeclare package interpolation = Noise.Interpolators.StepResponse,
- sampleFactor=10,
- samplePeriod=0.1)
- annotation (Placement(transformation(extent={{-60,0},{-40,20}})));
- Modelica.Blocks.Continuous.Der derTabulated
- annotation (Placement(transformation(extent={{20,0},{40,20}})));
- Modelica.Blocks.Sources.RealExpression realExpression(y=tabulatedNoise.interpolation.suggestedSamplePeriod)
- annotation (Placement(transformation(extent={{-36,-84},{-16,-64}})));
-equation
- connect(rawNoise.y, firstOrder.u) annotation (Line(
- points={{-39,-30},{-22,-30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(firstOrder.y, derFilter.u) annotation (Line(
- points={{1,-30},{18,-30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(derConvolution.u, filteredNoise.y) annotation (Line(
- points={{18,50},{-39,50}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(derTabulated.u, tabulatedNoise.y) annotation (Line(
- points={{18,10},{-39,10}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics));
-end FrequencyShaping;
diff --git a/Noise 1.0 Beta.1/Examples/InterpolateRandomNumbers.mo b/Noise 1.0 Beta.1/Examples/InterpolateRandomNumbers.mo
deleted file mode 100644
index 650dca3a..00000000
--- a/Noise 1.0 Beta.1/Examples/InterpolateRandomNumbers.mo
+++ /dev/null
@@ -1,68 +0,0 @@
-within Noise.Examples;
-model InterpolateRandomNumbers
- "Interpolate random numbers with the various interpolators"
- extends Modelica.Icons.Example;
-
- parameter Modelica.SIunits.Time samplePeriod = 1.0
- "Sample period for the generation of random numbers";
- parameter Integer seed = 614657 "Seed to initialize random number generator";
-
-protected
- final parameter Integer id = Modelica_Noise.Math.Random.Utilities.initializeImpureRandom(
- seed)
- "An identifier to ensure initialization of the impure random number generator";
-public
- parameter Real r[100](each fixed = false) "Random number buffer";
-initial algorithm
- for i in 1:100 loop
- r[i] := Modelica_Noise.Math.Random.Utilities.impureRandom(id);
- end for;
-
-public
- Real offset "The offset for interpolation";
- Real rConstant "Constantly interpolated random number";
- Real rLinear "Linearly interpolated random number";
- Real rSmooth "Smoothly inteprolated random number";
-equation
- offset = mod(time / samplePeriod, 90) + 5.0;
- rConstant =Noise.Interpolators.Constant.interpolate(buffer=r, offset=offset);
- rLinear =Noise.Interpolators.Linear.interpolate(buffer=r, offset=offset);
- rSmooth =Noise.Interpolators.SmoothIdealLowPass.interpolate(buffer=r,
- offset=offset);
-
- annotation (experiment(StopTime=20, Interval=2e-2),
- Documentation(info="
-
-This example demonstrates how to use the interpolators
-of package Math.Random.Interpolators in a Modelica model.
-The example uses the impure random function to generate a series of random numbers.
-These are then interpolated piece-wise constantly, linearly and using the smooth interpolation of truncated ideal low-pass.
-Simulations results are shown in the figure below:
-
-
-
-
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"),
- __Dymola_experimentSetupOutput);
-end InterpolateRandomNumbers;
diff --git a/Noise 1.0 Beta.1/Examples/Interpolation.mo b/Noise 1.0 Beta.1/Examples/Interpolation.mo
deleted file mode 100644
index d5908e53..00000000
--- a/Noise 1.0 Beta.1/Examples/Interpolation.mo
+++ /dev/null
@@ -1,155 +0,0 @@
-within Noise.Examples;
-model Interpolation "Tests all interpolators"
- extends Modelica.Icons.Example;
- inner Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed(useAutomaticSeed=
- false) annotation (Placement(transformation(extent={{60,60},{80,80}})));
- Sources.TimeBasedNoise
- constantNoise(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- redeclare package interpolation = Noise.Interpolators.Constant,
- y_min=-1,
- y_max=3) annotation (Placement(transformation(extent={{-60,70},{-40,90}})));
- Sources.TimeBasedNoise
- linearNoise(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- sampleFactor=10,
- y_min=-1,
- y_max=3,
- redeclare package interpolation = Noise.Interpolators.Linear)
- annotation (Placement(transformation(extent={{-60,20},{-40,40}})));
- Sources.TimeBasedNoise
- smoothNoise(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- redeclare package interpolation = Noise.Interpolators.SmoothIdealLowPass,
- y_min=-1,
- y_max=3,
- sampleFactor=10)
- annotation (Placement(transformation(extent={{-60,-30},{-40,-10}})));
- Sources.TimeBasedNoise filteredNoise(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- sampleFactor=10,
- redeclare package interpolation = Noise.Interpolators.FirstOrder)
- annotation (Placement(transformation(extent={{-60,-80},{-40,-60}})));
- Modelica.Blocks.Continuous.Der derFiltered
- annotation (Placement(transformation(extent={{0,-92},{20,-72}})));
- Modelica.Blocks.Continuous.FirstOrder filteredFiltered(T=0.00001, y_start=0.2,
- initType=Modelica.Blocks.Types.Init.InitialState)
- annotation (Placement(transformation(extent={{-20,-68},{0,-48}})));
- Modelica.Blocks.Continuous.Der derFilteredFiltered
- annotation (Placement(transformation(extent={{20,-68},{40,-48}})));
- Modelica.Blocks.Continuous.Der derLinear
- annotation (Placement(transformation(extent={{0,8},{20,28}})));
- Modelica.Blocks.Continuous.Filter linearFiltered(
- y_start=0.2,
- f_cut=1e5,
- order=2) annotation (Placement(transformation(extent={{-20,32},{0,52}})));
- Modelica.Blocks.Continuous.Der derLinearFiltered
- annotation (Placement(transformation(extent={{20,32},{40,52}})));
- Modelica.Blocks.Continuous.Der derSmooth
- annotation (Placement(transformation(extent={{0,-42},{20,-22}})));
- Modelica.Blocks.Continuous.Filter smoothFiltered(
- y_start=0.2,
- f_cut=1e5,
- order=2) annotation (Placement(transformation(extent={{-20,-18},{0,2}})));
- Modelica.Blocks.Continuous.Der derSmoothFiltered
- annotation (Placement(transformation(extent={{20,-18},{40,2}})));
- Sources.TimeBasedNoise stepNoise(
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- y_min=-1,
- y_max=3,
- sampleFactor=10,
- redeclare package interpolation = Noise.Interpolators.StepResponse)
- annotation (Placement(transformation(extent={{-60,-130},{-40,-110}})));
- Modelica.Blocks.Continuous.FirstOrder stepFiltered(T=0.00001, y_start=0.2,
- initType=Modelica.Blocks.Types.Init.InitialState)
- annotation (Placement(transformation(extent={{-20,-118},{0,-98}})));
- Modelica.Blocks.Continuous.Der derStepFiltered
- annotation (Placement(transformation(extent={{20,-118},{40,-98}})));
- Modelica.Blocks.Continuous.Der derStep
- annotation (Placement(transformation(extent={{0,-140},{20,-120}})));
-equation
- connect(filteredFiltered.y, derFilteredFiltered.u) annotation (Line(
- points={{1,-58},{18,-58}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(filteredFiltered.u, filteredNoise.y) annotation (Line(
- points={{-22,-58},{-28,-58},{-28,-70},{-39,-70}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(derFiltered.u, filteredNoise.y) annotation (Line(
- points={{-2,-82},{-28,-82},{-28,-70},{-39,-70}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(linearFiltered.u, linearNoise.y) annotation (Line(
- points={{-22,42},{-30,42},{-30,30},{-39,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(linearFiltered.y, derLinearFiltered.u) annotation (Line(
- points={{1,42},{18,42}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(derLinear.u, linearNoise.y) annotation (Line(
- points={{-2,18},{-30,18},{-30,30},{-39,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(smoothFiltered.y, derSmoothFiltered.u) annotation (Line(
- points={{1,-8},{18,-8}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(smoothFiltered.u, smoothNoise.y) annotation (Line(
- points={{-22,-8},{-32,-8},{-32,-20},{-39,-20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(derSmooth.u, smoothNoise.y) annotation (Line(
- points={{-2,-32},{-32,-32},{-32,-20},{-39,-20}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(stepFiltered.y, derStepFiltered.u) annotation (Line(
- points={{1,-108},{18,-108}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(stepFiltered.u, stepNoise.y) annotation (Line(
- points={{-22,-108},{-28,-108},{-28,-120},{-39,-120}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(derStep.u, stepNoise.y) annotation (Line(
- points={{-2,-130},{-28,-130},{-28,-120},{-39,-120}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (experiment(StopTime=2),
- Documentation(info="
-This example demonstrates the different interpolation methods that can be selected for a Noise block.All the blocks use samplePeriod = 0.1 s and generated uniform noise in the band y_min=-1 .. y_max=3. Furhtermore, all blocks use the same fixedLocalSeed, so all blocks generate exactly the same random numbers at the sample instants 0 s, 0.1 s, 0.2 s, ... However, these values are differently interpolated as shown in the next diagram:
-
-As can be seen, constant (constantNoise.y) and linear (linearNoise.y) interpolation respects the defined band -1 .. 3. Instead, smooth interpolation with the sinc function (smoothNoise.y) may violate the band slightly in order to be able to smoothly interpolate the random values at the sample instants. In practical applications, this is not an issue because the exact band of the noise is usually not exactly known.
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"),Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -140},{100,100}}), graphics), Icon(coordinateSystem(extent={{-100,
- -140},{100,100}})));
-end Interpolation;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/FilterAndConvolution.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/FilterAndConvolution.mo
deleted file mode 100644
index d91c9d27..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/FilterAndConvolution.mo
+++ /dev/null
@@ -1,101 +0,0 @@
-within Noise.Examples.RailIrregularities.Comparisons;
-model FilterAndConvolution
- "Compares implementation with filter and convolution"
- extends Modelica.Icons.Example;
-
- constant Real convolutionResolution=MinimumPhaseInterpolator.T[2] -
- MinimumPhaseInterpolator.T[1];
-
- parameter Boolean doMinimum = true "Calculate minimum phase filter?";
- parameter Boolean doZero = false "Calculate zero phase filter?";
- parameter Boolean doFilter = true "Calculate state space phase filter?";
- parameter Boolean doTime = false "Calculate time-based noise?";
-
- parameter Modelica.SIunits.Duration samplePeriod = 0.1 "Common sample period";
-
- inner Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed(useAutomaticSeed=false)
- annotation (Placement(transformation(extent={{60,60},{80,80}})));
- Sources.SignalBasedNoise spaceDomainNoiseMinimum(
- useTime=false,
- redeclare package interpolation =
- Noise.Examples.RailIrregularities.MinimumPhaseInterpolator,
- samplePeriod=0.4,
- y_min=-1e10,
- y_max=+1e10,
- redeclare function distribution =
- Modelica_Noise.Math.TruncatedDistributions.Normal.quantile (mu=0, sigma=
- sqrt(0.5)/sqrt(samplePeriod)),
- useAutomaticLocalSeed=false) if doMinimum
- annotation (Placement(transformation(extent={{-20,20},{0,40}})));
-
- Modelica.Blocks.Continuous.Integrator position(y_start=123)
- annotation (Placement(transformation(extent={{-60,20},{-40,40}})));
- Modelica.Blocks.Sources.Constant velocity(k=100)
- annotation (Placement(transformation(extent={{-100,20},{-80,40}})));
- Modelica.Blocks.Continuous.TransferFunction spaceDomainFilter(b={2.7542724e-04,
- 4.5134777e-03} ./ {velocity.k,1}, a={1.0000000e+00,3.0670519e+00,2.2183340e-01}
- ./ {velocity.k^2,velocity.k,1}) if doFilter
- annotation (Placement(transformation(extent={{20,-20},{40,0}})));
- Sources.SignalBasedNoise spaceDomainNoiseWhite(
- useTime=false,
- y_min=-1e10,
- y_max=+1e10,
- useAutomaticLocalSeed=false,
- samplePeriod=samplePeriod,
- redeclare function distribution =
- Modelica_Noise.Math.TruncatedDistributions.Normal.quantile (mu=0, sigma=
- sqrt(0.5)/sqrt(samplePeriod))) if doFilter
- annotation (Placement(transformation(extent={{-20,-20},{0,0}})));
- Sources.SignalBasedNoise spaceDomainNoiseZero(
- useTime=false,
- y_min=-1e10,
- y_max=+1e10,
- useAutomaticLocalSeed=false,
- samplePeriod=samplePeriod,
- redeclare package interpolation =
- Noise.Examples.RailIrregularities.ZeroPhaseInterpolator,
- redeclare function distribution =
- Modelica_Noise.Math.TruncatedDistributions.Normal.quantile (mu=0, sigma=
- sqrt(0.5)/sqrt(samplePeriod))) if doZero
- annotation (Placement(transformation(extent={{-20,60},{0,80}})));
- Modelica.Blocks.Continuous.TransferFunction timeDomainFilter(b={2.7542724e-04,
- 4.5134777e-03} ./ {velocity.k,1}, a={1.0000000e+00,3.0670519e+00,
- 2.2183340e-01} ./ {velocity.k^2,velocity.k,1}) if
- doTime
- annotation (Placement(transformation(extent={{20,-60},{40,-40}})));
- Modelica_Noise.Blocks.Noise.BandLimitedWhiteNoise bandLimitedWhiteNoise(
- samplePeriod=samplePeriod/velocity.k, noisePower=
- 1/(velocity.k)) if doTime
- annotation (Placement(transformation(extent={{-20,-60},{0,-40}})));
-equation
- connect(velocity.y, position.u) annotation (Line(
- points={{-79,30},{-62,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(position.y, spaceDomainNoiseMinimum.u) annotation (Line(
- points={{-39,30},{-22,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(spaceDomainNoiseWhite.u, position.y) annotation (Line(
- points={{-22,-10},{-30,-10},{-30,30},{-39,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(spaceDomainFilter.u, spaceDomainNoiseWhite.y) annotation (Line(
- points={{18,-10},{1,-10}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(spaceDomainNoiseZero.u, position.y) annotation (Line(
- points={{-22,70},{-30,70},{-30,30},{-39,30}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(bandLimitedWhiteNoise.y, timeDomainFilter.u) annotation (Line(
- points={{1,-50},{18,-50}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics), experiment(
- StopTime=20,
- Interval=0.01,
- Tolerance=0.001),
- __Dymola_experimentSetupOutput);
-end FilterAndConvolution;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/MinimumAndZeroPhase.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/MinimumAndZeroPhase.mo
deleted file mode 100644
index 7c2f6002..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/MinimumAndZeroPhase.mo
+++ /dev/null
@@ -1,9 +0,0 @@
-within Noise.Examples.RailIrregularities.Comparisons;
-model MinimumAndZeroPhase
- "Compares implementation of convolution with minim and zero phase filters"
- extends FilterAndConvolution(doMinimum = true, doZero = true, doFilter = false, doTime = false);
- annotation (experiment(
- StopTime=20,
- Interval=0.0001,
- Tolerance=0.001), __Dymola_experimentSetupOutput);
-end MinimumAndZeroPhase;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/SpaceAndTimeDomain.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/SpaceAndTimeDomain.mo
deleted file mode 100644
index 4e27f86a..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/SpaceAndTimeDomain.mo
+++ /dev/null
@@ -1,8 +0,0 @@
-within Noise.Examples.RailIrregularities.Comparisons;
-model SpaceAndTimeDomain "Compares implementation in space and time domain"
- extends FilterAndConvolution(doMinimum = true, doZero = false, doFilter = false, doTime = true);
- annotation (experiment(
- StopTime=20,
- Interval=0.01,
- Tolerance=0.001), __Dymola_experimentSetupOutput);
-end SpaceAndTimeDomain;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.mo
deleted file mode 100644
index 2b90b455..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.mo
+++ /dev/null
@@ -1,6 +0,0 @@
-within Noise.Examples.RailIrregularities;
-package Comparisons "Contains comparisons between different implementations"
-extends Modelica.Icons.ExamplesPackage;
-
-
-end Comparisons;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.order b/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.order
deleted file mode 100644
index 93cbab53..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Comparisons/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-FilterAndConvolution
-SpaceAndTimeDomain
-MinimumAndZeroPhase
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Interpolator/package.order b/Noise 1.0 Beta.1/Examples/RailIrregularities/Interpolator/package.order
deleted file mode 100644
index e69de29b..00000000
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/MinimumPhaseInterpolator/package.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/MinimumPhaseInterpolator/package.mo
deleted file mode 100644
index b74d6cea..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/MinimumPhaseInterpolator/package.mo
+++ /dev/null
@@ -1,12 +0,0 @@
-within Noise.Examples.RailIrregularities;
-package MinimumPhaseInterpolator "Provides a filter function for rail irregularities (minimum phase)"
-
-
- extends Interpolators.StepResponse(
- T = { 0.0000000e+00, 1.0000000e-01, 2.0000000e-01, 3.0000000e-01, 4.0000000e-01, 5.0000000e-01, 6.0000000e-01, 7.0000000e-01, 8.0000000e-01, 9.0000000e-01, 1.0000000e+00, 1.1000000e+00, 1.2000000e+00, 1.3000000e+00, 1.4000000e+00, 1.5000000e+00, 1.6000000e+00, 1.7000000e+00, 1.8000000e+00, 1.9000000e+00, 2.0000000e+00, 2.1000000e+00, 2.2000000e+00, 2.3000000e+00, 2.4000000e+00, 2.5000000e+00, 2.6000000e+00, 2.7000000e+00, 2.8000000e+00, 2.9000000e+00, 3.0000000e+00, 3.1000000e+00, 3.2000000e+00, 3.3000000e+00, 3.4000000e+00, 3.5000000e+00, 3.6000000e+00, 3.7000000e+00, 3.8000000e+00, 3.9000000e+00, 4.0000000e+00, 4.1000000e+00, 4.2000000e+00, 4.3000000e+00, 4.4000000e+00, 4.5000000e+00, 4.6000000e+00, 4.7000000e+00, 4.8000000e+00, 4.9000000e+00, 5.0000000e+00, 5.1000000e+00, 5.2000000e+00, 5.3000000e+00, 5.4000000e+00, 5.5000000e+00, 5.6000000e+00, 5.7000000e+00, 5.8000000e+00, 5.9000000e+00, 6.0000000e+00, 6.1000000e+00, 6.2000000e+00, 6.3000000e+00, 6.4000000e+00, 6.5000000e+00, 6.6000000e+00, 6.7000000e+00, 6.8000000e+00, 6.9000000e+00, 7.0000000e+00, 7.1000000e+00, 7.2000000e+00, 7.3000000e+00, 7.4000000e+00, 7.5000000e+00, 7.6000000e+00, 7.7000000e+00, 7.8000000e+00, 7.9000000e+00, 8.0000000e+00, 8.1000000e+00, 8.2000000e+00, 8.3000000e+00, 8.4000000e+00, 8.5000000e+00, 8.6000000e+00, 8.7000000e+00, 8.8000000e+00, 8.9000000e+00, 9.0000000e+00, 9.1000000e+00, 9.2000000e+00, 9.3000000e+00, 9.4000000e+00, 9.5000000e+00, 9.6000000e+00, 9.7000000e+00, 9.8000000e+00, 9.9000000e+00, 1.0000000e+01, 1.0100000e+01, 1.0200000e+01, 1.0300000e+01, 1.0400000e+01, 1.0500000e+01, 1.0600000e+01, 1.0700000e+01, 1.0800000e+01, 1.0900000e+01, 1.1000000e+01, 1.1100000e+01, 1.1200000e+01, 1.1300000e+01, 1.1400000e+01, 1.1500000e+01, 1.1600000e+01, 1.1700000e+01, 1.1800000e+01, 1.1900000e+01, 1.2000000e+01, 1.2100000e+01, 1.2200000e+01, 1.2300000e+01, 1.2400000e+01, 1.2500000e+01, 1.2600000e+01, 1.2700000e+01, 1.2800000e+01, 1.2900000e+01, 1.3000000e+01, 1.3100000e+01, 1.3200000e+01, 1.3300000e+01, 1.3400000e+01, 1.3500000e+01, 1.3600000e+01, 1.3700000e+01, 1.3800000e+01, 1.3900000e+01, 1.4000000e+01, 1.4100000e+01, 1.4200000e+01, 1.4300000e+01, 1.4400000e+01, 1.4500000e+01, 1.4600000e+01, 1.4700000e+01, 1.4800000e+01, 1.4900000e+01, 1.5000000e+01, 1.5100000e+01, 1.5200000e+01, 1.5300000e+01, 1.5400000e+01, 1.5500000e+01, 1.5600000e+01, 1.5700000e+01, 1.5800000e+01, 1.5900000e+01, 1.6000000e+01, 1.6100000e+01, 1.6200000e+01, 1.6300000e+01, 1.6400000e+01, 1.6500000e+01, 1.6600000e+01, 1.6700000e+01, 1.6800000e+01, 1.6900000e+01, 1.7000000e+01, 1.7100000e+01, 1.7200000e+01, 1.7300000e+01, 1.7400000e+01, 1.7500000e+01, 1.7600000e+01, 1.7700000e+01, 1.7800000e+01, 1.7900000e+01, 1.8000000e+01, 1.8100000e+01, 1.8200000e+01, 1.8300000e+01, 1.8400000e+01, 1.8500000e+01, 1.8600000e+01, 1.8700000e+01, 1.8800000e+01, 1.8900000e+01, 1.9000000e+01, 1.9100000e+01, 1.9200000e+01, 1.9300000e+01, 1.9400000e+01, 1.9500000e+01, 1.9600000e+01, 1.9700000e+01, 1.9800000e+01, 1.9900000e+01, 2.0000000e+01, 2.0100000e+01, 2.0200000e+01, 2.0300000e+01, 2.0400000e+01, 2.0500000e+01, 2.0600000e+01, 2.0700000e+01, 2.0800000e+01, 2.0900000e+01, 2.1000000e+01, 2.1100000e+01, 2.1200000e+01, 2.1300000e+01, 2.1400000e+01, 2.1500000e+01, 2.1600000e+01, 2.1700000e+01, 2.1800000e+01, 2.1900000e+01, 2.2000000e+01, 2.2100000e+01, 2.2200000e+01, 2.2300000e+01, 2.2400000e+01, 2.2500000e+01, 2.2600000e+01, 2.2700000e+01, 2.2800000e+01, 2.2900000e+01, 2.3000000e+01, 2.3100000e+01, 2.3200000e+01, 2.3300000e+01, 2.3400000e+01, 2.3500000e+01, 2.3600000e+01, 2.3700000e+01, 2.3800000e+01, 2.3900000e+01, 2.4000000e+01, 2.4100000e+01, 2.4200000e+01, 2.4300000e+01, 2.4400000e+01, 2.4500000e+01, 2.4600000e+01, 2.4700000e+01, 2.4800000e+01, 2.4900000e+01, 2.5000000e+01, 2.5100000e+01, 2.5200000e+01, 2.5300000e+01, 2.5400000e+01, 2.5500000e+01, 2.5600000e+01, 2.5700000e+01, 2.5800000e+01, 2.5900000e+01, 2.6000000e+01, 2.6100000e+01, 2.6200000e+01, 2.6300000e+01, 2.6400000e+01, 2.6500000e+01, 2.6600000e+01, 2.6700000e+01, 2.6800000e+01, 2.6900000e+01, 2.7000000e+01, 2.7100000e+01, 2.7200000e+01, 2.7300000e+01, 2.7400000e+01, 2.7500000e+01, 2.7600000e+01, 2.7700000e+01, 2.7800000e+01, 2.7900000e+01, 2.8000000e+01, 2.8100000e+01, 2.8200000e+01, 2.8300000e+01, 2.8400000e+01, 2.8500000e+01, 2.8600000e+01, 2.8700000e+01, 2.8800000e+01, 2.8900000e+01, 2.9000000e+01, 2.9100000e+01, 2.9200000e+01, 2.9300000e+01, 2.9400000e+01, 2.9500000e+01, 2.9600000e+01, 2.9700000e+01, 2.9800000e+01, 2.9900000e+01, 3.0000000e+01, 3.0100000e+01, 3.0200000e+01, 3.0300000e+01, 3.0400000e+01, 3.0500000e+01, 3.0600000e+01, 3.0700000e+01, 3.0800000e+01, 3.0900000e+01, 3.1000000e+01, 3.1100000e+01, 3.1200000e+01, 3.1300000e+01, 3.1400000e+01, 3.1500000e+01, 3.1600000e+01, 3.1700000e+01, 3.1800000e+01, 3.1900000e+01, 3.2000000e+01, 3.2100000e+01, 3.2200000e+01, 3.2300000e+01, 3.2400000e+01, 3.2500000e+01, 3.2600000e+01, 3.2700000e+01, 3.2800000e+01, 3.2900000e+01, 3.3000000e+01, 3.3100000e+01, 3.3200000e+01, 3.3300000e+01, 3.3400000e+01, 3.3500000e+01, 3.3600000e+01, 3.3700000e+01, 3.3800000e+01, 3.3900000e+01, 3.4000000e+01, 3.4100000e+01, 3.4200000e+01, 3.4300000e+01, 3.4400000e+01, 3.4500000e+01, 3.4600000e+01, 3.4700000e+01, 3.4800000e+01, 3.4900000e+01, 3.5000000e+01, 3.5100000e+01, 3.5200000e+01, 3.5300000e+01, 3.5400000e+01, 3.5500000e+01, 3.5600000e+01, 3.5700000e+01, 3.5800000e+01, 3.5900000e+01, 3.6000000e+01, 3.6100000e+01, 3.6200000e+01, 3.6300000e+01, 3.6400000e+01, 3.6500000e+01, 3.6600000e+01, 3.6700000e+01, 3.6800000e+01, 3.6900000e+01, 3.7000000e+01, 3.7100000e+01, 3.7200000e+01, 3.7300000e+01, 3.7400000e+01, 3.7500000e+01, 3.7600000e+01, 3.7700000e+01, 3.7800000e+01, 3.7900000e+01, 3.8000000e+01, 3.8100000e+01, 3.8200000e+01, 3.8300000e+01, 3.8400000e+01, 3.8500000e+01, 3.8600000e+01, 3.8700000e+01, 3.8800000e+01, 3.8900000e+01, 3.9000000e+01, 3.9100000e+01, 3.9200000e+01, 3.9300000e+01, 3.9400000e+01, 3.9500000e+01, 3.9600000e+01, 3.9700000e+01, 3.9800000e+01, 3.9900000e+01, 4.0000000e+01, 4.0100000e+01, 4.0200000e+01, 4.0300000e+01, 4.0400000e+01, 4.0500000e+01, 4.0600000e+01, 4.0700000e+01, 4.0800000e+01, 4.0900000e+01, 4.1000000e+01, 4.1100000e+01, 4.1200000e+01, 4.1300000e+01, 4.1400000e+01, 4.1500000e+01, 4.1600000e+01, 4.1700000e+01, 4.1800000e+01, 4.1900000e+01, 4.2000000e+01, 4.2100000e+01, 4.2200000e+01, 4.2300000e+01, 4.2400000e+01, 4.2500000e+01, 4.2600000e+01, 4.2700000e+01, 4.2800000e+01, 4.2900000e+01, 4.3000000e+01, 4.3100000e+01, 4.3200000e+01, 4.3300000e+01, 4.3400000e+01, 4.3500000e+01, 4.3600000e+01, 4.3700000e+01, 4.3800000e+01, 4.3900000e+01, 4.4000000e+01, 4.4100000e+01, 4.4200000e+01, 4.4300000e+01, 4.4400000e+01, 4.4500000e+01, 4.4600000e+01, 4.4700000e+01, 4.4800000e+01, 4.4900000e+01, 4.5000000e+01, 4.5100000e+01, 4.5200000e+01, 4.5300000e+01, 4.5400000e+01, 4.5500000e+01, 4.5600000e+01, 4.5700000e+01, 4.5800000e+01, 4.5900000e+01, 4.6000000e+01, 4.6100000e+01, 4.6200000e+01, 4.6300000e+01, 4.6400000e+01, 4.6500000e+01, 4.6600000e+01, 4.6700000e+01, 4.6800000e+01, 4.6900000e+01, 4.7000000e+01, 4.7100000e+01, 4.7200000e+01, 4.7300000e+01, 4.7400000e+01, 4.7500000e+01, 4.7600000e+01, 4.7700000e+01, 4.7800000e+01, 4.7900000e+01, 4.8000000e+01, 4.8100000e+01, 4.8200000e+01, 4.8300000e+01, 4.8400000e+01, 4.8500000e+01, 4.8600000e+01, 4.8700000e+01, 4.8800000e+01, 4.8900000e+01, 4.9000000e+01, 4.9100000e+01, 4.9200000e+01, 4.9300000e+01, 4.9400000e+01, 4.9500000e+01, 4.9600000e+01, 4.9700000e+01, 4.9800000e+01, 4.9900000e+01, 5.0000000e+01, 5.0100000e+01, 5.0200000e+01, 5.0300000e+01, 5.0400000e+01, 5.0500000e+01, 5.0600000e+01, 5.0700000e+01, 5.0800000e+01, 5.0900000e+01, 5.1000000e+01, 5.1100000e+01, 5.1200000e+01, 5.1300000e+01, 5.1400000e+01, 5.1500000e+01, 5.1600000e+01, 5.1700000e+01, 5.1800000e+01, 5.1900000e+01, 5.2000000e+01, 5.2100000e+01, 5.2200000e+01, 5.2300000e+01, 5.2400000e+01, 5.2500000e+01, 5.2600000e+01, 5.2700000e+01, 5.2800000e+01, 5.2900000e+01, 5.3000000e+01, 5.3100000e+01, 5.3200000e+01, 5.3300000e+01, 5.3400000e+01, 5.3500000e+01, 5.3600000e+01, 5.3700000e+01, 5.3800000e+01, 5.3900000e+01, 5.4000000e+01, 5.4100000e+01, 5.4200000e+01, 5.4300000e+01, 5.4400000e+01, 5.4500000e+01, 5.4600000e+01, 5.4700000e+01, 5.4800000e+01, 5.4900000e+01, 5.5000000e+01, 5.5100000e+01, 5.5200000e+01, 5.5300000e+01, 5.5400000e+01, 5.5500000e+01, 5.5600000e+01, 5.5700000e+01, 5.5800000e+01, 5.5900000e+01, 5.6000000e+01, 5.6100000e+01, 5.6200000e+01, 5.6300000e+01, 5.6400000e+01, 5.6500000e+01, 5.6600000e+01, 5.6700000e+01, 5.6800000e+01, 5.6900000e+01, 5.7000000e+01, 5.7100000e+01, 5.7200000e+01, 5.7300000e+01, 5.7400000e+01, 5.7500000e+01, 5.7600000e+01, 5.7700000e+01, 5.7800000e+01, 5.7900000e+01, 5.8000000e+01, 5.8100000e+01, 5.8200000e+01, 5.8300000e+01, 5.8400000e+01, 5.8500000e+01, 5.8600000e+01, 5.8700000e+01, 5.8800000e+01, 5.8900000e+01, 5.9000000e+01, 5.9100000e+01, 5.9200000e+01, 5.9300000e+01, 5.9400000e+01, 5.9500000e+01, 5.9600000e+01, 5.9700000e+01, 5.9800000e+01, 5.9900000e+01, 6.0000000e+01, 6.0100000e+01, 6.0200000e+01, 6.0300000e+01, 6.0400000e+01, 6.0500000e+01, 6.0600000e+01, 6.0700000e+01, 6.0800000e+01, 6.0900000e+01, 6.1000000e+01, 6.1100000e+01, 6.1200000e+01, 6.1300000e+01, 6.1400000e+01, 6.1500000e+01, 6.1600000e+01, 6.1700000e+01, 6.1800000e+01, 6.1900000e+01, 6.2000000e+01, 6.2100000e+01, 6.2200000e+01, 6.2300000e+01, 6.2400000e+01, 6.2500000e+01, 6.2600000e+01, 6.2700000e+01, 6.2800000e+01, 6.2900000e+01, 6.3000000e+01, 6.3100000e+01, 6.3200000e+01, 6.3300000e+01, 6.3400000e+01, 6.3500000e+01, 6.3600000e+01, 6.3700000e+01, 6.3800000e+01, 6.3900000e+01, 6.4000000e+01, 6.4100000e+01, 6.4200000e+01, 6.4300000e+01, 6.4400000e+01, 6.4500000e+01, 6.4600000e+01, 6.4700000e+01, 6.4800000e+01, 6.4900000e+01, 6.5000000e+01, 6.5100000e+01, 6.5200000e+01, 6.5300000e+01, 6.5400000e+01, 6.5500000e+01, 6.5600000e+01, 6.5700000e+01, 6.5800000e+01, 6.5900000e+01, 6.6000000e+01, 6.6100000e+01, 6.6200000e+01, 6.6300000e+01, 6.6400000e+01, 6.6500000e+01, 6.6600000e+01, 6.6700000e+01, 6.6800000e+01, 6.6900000e+01, 6.7000000e+01, 6.7100000e+01, 6.7200000e+01, 6.7300000e+01, 6.7400000e+01, 6.7500000e+01, 6.7600000e+01, 6.7700000e+01, 6.7800000e+01, 6.7900000e+01, 6.8000000e+01, 6.8100000e+01, 6.8200000e+01, 6.8300000e+01, 6.8400000e+01, 6.8500000e+01, 6.8600000e+01, 6.8700000e+01, 6.8800000e+01, 6.8900000e+01, 6.9000000e+01, 6.9100000e+01, 6.9200000e+01, 6.9300000e+01, 6.9400000e+01, 6.9500000e+01, 6.9600000e+01, 6.9700000e+01, 6.9800000e+01, 6.9900000e+01, 7.0000000e+01, 7.0100000e+01, 7.0200000e+01, 7.0300000e+01, 7.0400000e+01, 7.0500000e+01, 7.0600000e+01, 7.0700000e+01, 7.0800000e+01, 7.0900000e+01, 7.1000000e+01, 7.1100000e+01, 7.1200000e+01, 7.1300000e+01, 7.1400000e+01, 7.1500000e+01, 7.1600000e+01, 7.1700000e+01, 7.1800000e+01, 7.1900000e+01, 7.2000000e+01, 7.2100000e+01, 7.2200000e+01, 7.2300000e+01, 7.2400000e+01, 7.2500000e+01, 7.2600000e+01, 7.2700000e+01, 7.2800000e+01, 7.2900000e+01, 7.3000000e+01, 7.3100000e+01, 7.3200000e+01, 7.3300000e+01, 7.3400000e+01, 7.3500000e+01, 7.3600000e+01, 7.3700000e+01, 7.3800000e+01, 7.3900000e+01, 7.4000000e+01, 7.4100000e+01, 7.4200000e+01, 7.4300000e+01, 7.4400000e+01, 7.4500000e+01, 7.4600000e+01, 7.4700000e+01, 7.4800000e+01, 7.4900000e+01, 7.5000000e+01, 7.5100000e+01, 7.5200000e+01, 7.5300000e+01, 7.5400000e+01, 7.5500000e+01, 7.5600000e+01, 7.5700000e+01, 7.5800000e+01, 7.5900000e+01, 7.6000000e+01, 7.6100000e+01, 7.6200000e+01, 7.6300000e+01, 7.6400000e+01, 7.6500000e+01, 7.6600000e+01, 7.6700000e+01, 7.6800000e+01, 7.6900000e+01, 7.7000000e+01, 7.7100000e+01, 7.7200000e+01, 7.7300000e+01, 7.7400000e+01, 7.7500000e+01, 7.7600000e+01, 7.7700000e+01, 7.7800000e+01, 7.7900000e+01, 7.8000000e+01, 7.8100000e+01, 7.8200000e+01, 7.8300000e+01, 7.8400000e+01, 7.8500000e+01, 7.8600000e+01, 7.8700000e+01, 7.8800000e+01, 7.8900000e+01, 7.9000000e+01, 7.9100000e+01, 7.9200000e+01, 7.9300000e+01, 7.9400000e+01, 7.9500000e+01, 7.9600000e+01, 7.9700000e+01, 7.9800000e+01, 7.9900000e+01, 8.0000000e+01, 8.0100000e+01, 8.0200000e+01, 8.0300000e+01, 8.0400000e+01, 8.0500000e+01, 8.0600000e+01, 8.0700000e+01, 8.0800000e+01, 8.0900000e+01, 8.1000000e+01, 8.1100000e+01, 8.1200000e+01, 8.1300000e+01, 8.1400000e+01, 8.1500000e+01, 8.1600000e+01, 8.1700000e+01, 8.1800000e+01, 8.1900000e+01, 8.2000000e+01, 8.2100000e+01, 8.2200000e+01, 8.2300000e+01, 8.2400000e+01, 8.2500000e+01, 8.2600000e+01, 8.2700000e+01, 8.2800000e+01, 8.2900000e+01, 8.3000000e+01, 8.3100000e+01, 8.3200000e+01, 8.3300000e+01, 8.3400000e+01, 8.3500000e+01, 8.3600000e+01, 8.3700000e+01, 8.3800000e+01, 8.3900000e+01, 8.4000000e+01, 8.4100000e+01, 8.4200000e+01, 8.4300000e+01, 8.4400000e+01, 8.4500000e+01, 8.4600000e+01, 8.4700000e+01, 8.4800000e+01, 8.4900000e+01, 8.5000000e+01, 8.5100000e+01},
- step = { 0.0000000e+00, 5.4748721e-05, 1.3669502e-04, 2.3594576e-04, 3.4737509e-04, 4.6765124e-04, 5.9429827e-04, 7.2548962e-04, 8.5980984e-04, 9.9616472e-04, 1.1337263e-03, 1.2718827e-03, 1.4101993e-03, 1.5483796e-03, 1.6862062e-03, 1.8235176e-03, 1.9602063e-03, 2.0961932e-03, 2.2313923e-03, 2.3657151e-03, 2.4991084e-03, 2.6315732e-03, 2.7631398e-03, 2.8938253e-03, 3.0236104e-03, 3.1524528e-03, 3.2803213e-03, 3.4072178e-03, 3.5331704e-03, 3.6582123e-03, 3.7823648e-03, 3.9056322e-03, 4.0280049e-03, 4.1494689e-03, 4.2700163e-03, 4.3896486e-03, 4.5083742e-03, 4.6262042e-03, 4.7431516e-03, 4.8592323e-03, 4.9744653e-03, 5.0888668e-03, 5.2024432e-03, 5.3151898e-03, 5.4270976e-03, 5.5381634e-03, 5.6483930e-03, 5.7577981e-03, 5.8663889e-03, 5.9741707e-03, 6.0811443e-03, 6.1873108e-03, 6.2926773e-03, 6.3972578e-03, 6.5010701e-03, 6.6041311e-03, 6.7064519e-03, 6.8080372e-03, 6.9088886e-03, 7.0090072e-03, 7.1083938e-03, 7.2070485e-03, 7.3049708e-03, 7.4021618e-03, 7.4986260e-03, 7.5943713e-03, 7.6894064e-03, 7.7837381e-03, 7.8773709e-03, 7.9703081e-03, 8.0625551e-03, 8.1541212e-03, 8.2450185e-03, 8.3352594e-03, 8.4248527e-03, 8.5138028e-03, 8.6021107e-03, 8.6897769e-03, 8.7768033e-03, 8.8631928e-03, 8.9489484e-03, 9.0340718e-03, 9.1185642e-03, 9.2024273e-03, 9.2856639e-03, 9.3682774e-03, 9.4502713e-03, 9.5316487e-03, 9.6124134e-03, 9.6925709e-03, 9.7721279e-03, 9.8510922e-03, 9.9294708e-03, 1.0007269e-02, 1.0084489e-02, 1.0161136e-02, 1.0237215e-02, 1.0312734e-02, 1.0387700e-02, 1.0462120e-02, 1.0536000e-02, 1.0609343e-02, 1.0682152e-02, 1.0754428e-02, 1.0826176e-02, 1.0897397e-02, 1.0968095e-02, 1.1038271e-02, 1.1107927e-02, 1.1177066e-02, 1.1245690e-02, 1.1313801e-02, 1.1381403e-02, 1.1448496e-02, 1.1515084e-02, 1.1581171e-02, 1.1646761e-02, 1.1711861e-02, 1.1776475e-02, 1.1840605e-02, 1.1904254e-02, 1.1967426e-02, 1.2030126e-02, 1.2092357e-02, 1.2154126e-02, 1.2215436e-02, 1.2276290e-02, 1.2336692e-02, 1.2396647e-02, 1.2456158e-02, 1.2515230e-02, 1.2573868e-02, 1.2632075e-02, 1.2689856e-02, 1.2747215e-02, 1.2804155e-02, 1.2860681e-02, 1.2916795e-02, 1.2972499e-02, 1.3027794e-02, 1.3082683e-02, 1.3137169e-02, 1.3191255e-02, 1.3244944e-02, 1.3298237e-02, 1.3351136e-02, 1.3403643e-02, 1.3455760e-02, 1.3507491e-02, 1.3558838e-02, 1.3609805e-02, 1.3660393e-02, 1.3710606e-02, 1.3760445e-02, 1.3809915e-02, 1.3859017e-02, 1.3907756e-02, 1.3956133e-02, 1.4004152e-02, 1.4051816e-02, 1.4099127e-02, 1.4146090e-02, 1.4192707e-02, 1.4238980e-02, 1.4284911e-02, 1.4330503e-02, 1.4375758e-02, 1.4420681e-02, 1.4465272e-02, 1.4509535e-02, 1.4553472e-02, 1.4597085e-02, 1.4640375e-02, 1.4683346e-02, 1.4726001e-02, 1.4768342e-02, 1.4810372e-02, 1.4852092e-02, 1.4893506e-02, 1.4934615e-02, 1.4975423e-02, 1.5015931e-02, 1.5056140e-02, 1.5096053e-02, 1.5135670e-02, 1.5174994e-02, 1.5214026e-02, 1.5252769e-02, 1.5291222e-02, 1.5329388e-02, 1.5367268e-02, 1.5404864e-02, 1.5442177e-02, 1.5479210e-02, 1.5515965e-02, 1.5552443e-02, 1.5588645e-02, 1.5624574e-02, 1.5660232e-02, 1.5695621e-02, 1.5730742e-02, 1.5765599e-02, 1.5800193e-02, 1.5834526e-02, 1.5868600e-02, 1.5902418e-02, 1.5935983e-02, 1.5969296e-02, 1.6002359e-02, 1.6035175e-02, 1.6067747e-02, 1.6100077e-02, 1.6132168e-02, 1.6164021e-02, 1.6195638e-02, 1.6227022e-02, 1.6258175e-02, 1.6289099e-02, 1.6319796e-02, 1.6350269e-02, 1.6380518e-02, 1.6410546e-02, 1.6440355e-02, 1.6469946e-02, 1.6499321e-02, 1.6528483e-02, 1.6557432e-02, 1.6586170e-02, 1.6614699e-02, 1.6643020e-02, 1.6671134e-02, 1.6699044e-02, 1.6726750e-02, 1.6754254e-02, 1.6781558e-02, 1.6808662e-02, 1.6835568e-02, 1.6862279e-02, 1.6888795e-02, 1.6915117e-02, 1.6941246e-02, 1.6967184e-02, 1.6992932e-02, 1.7018490e-02, 1.7043861e-02, 1.7069045e-02, 1.7094042e-02, 1.7118853e-02, 1.7143479e-02, 1.7167922e-02, 1.7192182e-02, 1.7216261e-02, 1.7240158e-02, 1.7263875e-02, 1.7287413e-02, 1.7310773e-02, 1.7333956e-02, 1.7356964e-02, 1.7379797e-02, 1.7402457e-02, 1.7424945e-02, 1.7447262e-02, 1.7469409e-02, 1.7491389e-02, 1.7513201e-02, 1.7534847e-02, 1.7556329e-02, 1.7577647e-02, 1.7598805e-02, 1.7619802e-02, 1.7640640e-02, 1.7661322e-02, 1.7681847e-02, 1.7702217e-02, 1.7722435e-02, 1.7742501e-02, 1.7762417e-02, 1.7782184e-02, 1.7801803e-02, 1.7821277e-02, 1.7840605e-02, 1.7859791e-02, 1.7878835e-02, 1.7897738e-02, 1.7916501e-02, 1.7935127e-02, 1.7953615e-02, 1.7971968e-02, 1.7990186e-02, 1.8008271e-02, 1.8026223e-02, 1.8044043e-02, 1.8061733e-02, 1.8079293e-02, 1.8096725e-02, 1.8114028e-02, 1.8131205e-02, 1.8148256e-02, 1.8165181e-02, 1.8181982e-02, 1.8198659e-02, 1.8215213e-02, 1.8231645e-02, 1.8247956e-02, 1.8264146e-02, 1.8280216e-02, 1.8296167e-02, 1.8311999e-02, 1.8327713e-02, 1.8343310e-02, 1.8358791e-02, 1.8374155e-02, 1.8389405e-02, 1.8404541e-02, 1.8419564e-02, 1.8434475e-02, 1.8449273e-02, 1.8463961e-02, 1.8478540e-02, 1.8493009e-02, 1.8507370e-02, 1.8521624e-02, 1.8535772e-02, 1.8549813e-02, 1.8563750e-02, 1.8577583e-02, 1.8591312e-02, 1.8604939e-02, 1.8618464e-02, 1.8631888e-02, 1.8645211e-02, 1.8658435e-02, 1.8671561e-02, 1.8684588e-02, 1.8697518e-02, 1.8710350e-02, 1.8723087e-02, 1.8735729e-02, 1.8748277e-02, 1.8760731e-02, 1.8773092e-02, 1.8785361e-02, 1.8797538e-02, 1.8809625e-02, 1.8821622e-02, 1.8833529e-02, 1.8845348e-02, 1.8857080e-02, 1.8868724e-02, 1.8880281e-02, 1.8891753e-02, 1.8903140e-02, 1.8914442e-02, 1.8925660e-02, 1.8936794e-02, 1.8947845e-02, 1.8958815e-02, 1.8969702e-02, 1.8980508e-02, 1.8991234e-02, 1.9001879e-02, 1.9012445e-02, 1.9022932e-02, 1.9033340e-02, 1.9043670e-02, 1.9053922e-02, 1.9064098e-02, 1.9074196e-02, 1.9084218e-02, 1.9094164e-02, 1.9104035e-02, 1.9113831e-02, 1.9123553e-02, 1.9133200e-02, 1.9142774e-02, 1.9152275e-02, 1.9161703e-02, 1.9171059e-02, 1.9180344e-02, 1.9189557e-02, 1.9198700e-02, 1.9207772e-02, 1.9216775e-02, 1.9225709e-02, 1.9234573e-02, 1.9243370e-02, 1.9252099e-02, 1.9260760e-02, 1.9269355e-02, 1.9277884e-02, 1.9286347e-02, 1.9294745e-02, 1.9303077e-02, 1.9311346e-02, 1.9319552e-02, 1.9327694e-02, 1.9335774e-02, 1.9343792e-02, 1.9351749e-02, 1.9359645e-02, 1.9367481e-02, 1.9375257e-02, 1.9382974e-02, 1.9390633e-02, 1.9398234e-02, 1.9405777e-02, 1.9413264e-02, 1.9420695e-02, 1.9428070e-02, 1.9435389e-02, 1.9442654e-02, 1.9449865e-02, 1.9457022e-02, 1.9464126e-02, 1.9471177e-02, 1.9478176e-02, 1.9485123e-02, 1.9492019e-02, 1.9498864e-02, 1.9505659e-02, 1.9512404e-02, 1.9519099e-02, 1.9525745e-02, 1.9532343e-02, 1.9538893e-02, 1.9545395e-02, 1.9551849e-02, 1.9558257e-02, 1.9564617e-02, 1.9570932e-02, 1.9577200e-02, 1.9583422e-02, 1.9589599e-02, 1.9595731e-02, 1.9601817e-02, 1.9607859e-02, 1.9613856e-02, 1.9619809e-02, 1.9625718e-02, 1.9631583e-02, 1.9637404e-02, 1.9643182e-02, 1.9648916e-02, 1.9654607e-02, 1.9660255e-02, 1.9665861e-02, 1.9671424e-02, 1.9676944e-02, 1.9682422e-02, 1.9687859e-02, 1.9693253e-02, 1.9698607e-02, 1.9703919e-02, 1.9709190e-02, 1.9714420e-02, 1.9719610e-02, 1.9724759e-02, 1.9729869e-02, 1.9734939e-02, 1.9739970e-02, 1.9744962e-02, 1.9749915e-02, 1.9754830e-02, 1.9759707e-02, 1.9764546e-02, 1.9769347e-02, 1.9774112e-02, 1.9778840e-02, 1.9783531e-02, 1.9788186e-02, 1.9792805e-02, 1.9797389e-02, 1.9801938e-02, 1.9806451e-02, 1.9810930e-02, 1.9815374e-02, 1.9819785e-02, 1.9824161e-02, 1.9828504e-02, 1.9832814e-02, 1.9837090e-02, 1.9841334e-02, 1.9845546e-02, 1.9849725e-02, 1.9853872e-02, 1.9857988e-02, 1.9862072e-02, 1.9866124e-02, 1.9870146e-02, 1.9874137e-02, 1.9878097e-02, 1.9882026e-02, 1.9885925e-02, 1.9889794e-02, 1.9893632e-02, 1.9897441e-02, 1.9901220e-02, 1.9904970e-02, 1.9908690e-02, 1.9912381e-02, 1.9916043e-02, 1.9919676e-02, 1.9923280e-02, 1.9926856e-02, 1.9930403e-02, 1.9933923e-02, 1.9937414e-02, 1.9940877e-02, 1.9944313e-02, 1.9947722e-02, 1.9951103e-02, 1.9954457e-02, 1.9957784e-02, 1.9961085e-02, 1.9964359e-02, 1.9967607e-02, 1.9970829e-02, 1.9974025e-02, 1.9977195e-02, 1.9980340e-02, 1.9983460e-02, 1.9986555e-02, 1.9989625e-02, 1.9992671e-02, 1.9995693e-02, 1.9998690e-02, 2.0001664e-02, 2.0004614e-02, 2.0007541e-02, 2.0010446e-02, 2.0013327e-02, 2.0016186e-02, 2.0019023e-02, 2.0021838e-02, 2.0024631e-02, 2.0027403e-02, 2.0030153e-02, 2.0032882e-02, 2.0035591e-02, 2.0038279e-02, 2.0040948e-02, 2.0043596e-02, 2.0046224e-02, 2.0048832e-02, 2.0051422e-02, 2.0053992e-02, 2.0056543e-02, 2.0059075e-02, 2.0061588e-02, 2.0064083e-02, 2.0066560e-02, 2.0069018e-02, 2.0071459e-02, 2.0073881e-02, 2.0076286e-02, 2.0078673e-02, 2.0081043e-02, 2.0083395e-02, 2.0085730e-02, 2.0088048e-02, 2.0090348e-02, 2.0092632e-02, 2.0094899e-02, 2.0097150e-02, 2.0099384e-02, 2.0101602e-02, 2.0103803e-02, 2.0105988e-02, 2.0108157e-02, 2.0110311e-02, 2.0112448e-02, 2.0114570e-02, 2.0116676e-02, 2.0118767e-02, 2.0120842e-02, 2.0122902e-02, 2.0124947e-02, 2.0126977e-02, 2.0128991e-02, 2.0130991e-02, 2.0132976e-02, 2.0134946e-02, 2.0136902e-02, 2.0138843e-02, 2.0140770e-02, 2.0142683e-02, 2.0144581e-02, 2.0146465e-02, 2.0148335e-02, 2.0150192e-02, 2.0152034e-02, 2.0153863e-02, 2.0155679e-02, 2.0157481e-02, 2.0159269e-02, 2.0161044e-02, 2.0162806e-02, 2.0164555e-02, 2.0166292e-02, 2.0168015e-02, 2.0169725e-02, 2.0171423e-02, 2.0173108e-02, 2.0174781e-02, 2.0176441e-02, 2.0178089e-02, 2.0179725e-02, 2.0181348e-02, 2.0182960e-02, 2.0184560e-02, 2.0186148e-02, 2.0187724e-02, 2.0189288e-02, 2.0190841e-02, 2.0192382e-02, 2.0193912e-02, 2.0195430e-02, 2.0196937e-02, 2.0198433e-02, 2.0199917e-02, 2.0201390e-02, 2.0202852e-02, 2.0204303e-02, 2.0205743e-02, 2.0207171e-02, 2.0208589e-02, 2.0209995e-02, 2.0211391e-02, 2.0212775e-02, 2.0214149e-02, 2.0215511e-02, 2.0216863e-02, 2.0218204e-02, 2.0219533e-02, 2.0220852e-02, 2.0222161e-02, 2.0223458e-02, 2.0224744e-02, 2.0226020e-02, 2.0227285e-02, 2.0228539e-02, 2.0229782e-02, 2.0231015e-02, 2.0232237e-02, 2.0233449e-02, 2.0234650e-02, 2.0235841e-02, 2.0237021e-02, 2.0238192e-02, 2.0239351e-02, 2.0240501e-02, 2.0241641e-02, 2.0242770e-02, 2.0243890e-02, 2.0245000e-02, 2.0246100e-02, 2.0247191e-02, 2.0248271e-02, 2.0249343e-02, 2.0250404e-02, 2.0251457e-02, 2.0252500e-02, 2.0253534e-02, 2.0254559e-02, 2.0255575e-02, 2.0256582e-02, 2.0257580e-02, 2.0258570e-02, 2.0259551e-02, 2.0260523e-02, 2.0261487e-02, 2.0262443e-02, 2.0263391e-02, 2.0264330e-02, 2.0265261e-02, 2.0266185e-02, 2.0267100e-02, 2.0268008e-02, 2.0268908e-02, 2.0269800e-02, 2.0270685e-02, 2.0271562e-02, 2.0272431e-02, 2.0273293e-02, 2.0274148e-02, 2.0274996e-02, 2.0275836e-02, 2.0276669e-02, 2.0277495e-02, 2.0278313e-02, 2.0279125e-02, 2.0279929e-02, 2.0280727e-02, 2.0281517e-02, 2.0282301e-02, 2.0283077e-02, 2.0283847e-02, 2.0284609e-02, 2.0285365e-02, 2.0286114e-02, 2.0286856e-02, 2.0287592e-02, 2.0288320e-02, 2.0289042e-02, 2.0289758e-02, 2.0290466e-02, 2.0291168e-02, 2.0291864e-02, 2.0292553e-02, 2.0293236e-02, 2.0293912e-02, 2.0294582e-02, 2.0295246e-02, 2.0295903e-02, 2.0296554e-02, 2.0297200e-02, 2.0297839e-02, 2.0298472e-02, 2.0299100e-02, 2.0299721e-02, 2.0300337e-02, 2.0300947e-02, 2.0301552e-02, 2.0302151e-02, 2.0302745e-02, 2.0303333e-02, 2.0303916e-02, 2.0304494e-02, 2.0305066e-02, 2.0305634e-02, 2.0306196e-02, 2.0306754e-02, 2.0307307e-02, 2.0307855e-02, 2.0308398e-02, 2.0308936e-02, 2.0309470e-02, 2.0309999e-02, 2.0310524e-02, 2.0311044e-02, 2.0311560e-02, 2.0312071e-02, 2.0312578e-02, 2.0313081e-02, 2.0313579e-02, 2.0314073e-02, 2.0314562e-02, 2.0315048e-02, 2.0315529e-02, 2.0316006e-02, 2.0316479e-02, 2.0316948e-02, 2.0317413e-02, 2.0317874e-02, 2.0318331e-02, 2.0318783e-02, 2.0319232e-02, 2.0319677e-02, 2.0320118e-02, 2.0320555e-02, 2.0320988e-02, 2.0321418e-02, 2.0321843e-02, 2.0322265e-02, 2.0322683e-02, 2.0323097e-02, 2.0323507e-02, 2.0323914e-02, 2.0324317e-02, 2.0324716e-02, 2.0325111e-02, 2.0325503e-02, 2.0325891e-02, 2.0326275e-02, 2.0326656e-02, 2.0327033e-02, 2.0327406e-02, 2.0327776e-02, 2.0328142e-02, 2.0328505e-02, 2.0328864e-02, 2.0329220e-02, 2.0329572e-02, 2.0329921e-02, 2.0330266e-02, 2.0330608e-02, 2.0330947e-02, 2.0331282e-02, 2.0331614e-02, 2.0331942e-02, 2.0332267e-02, 2.0332589e-02, 2.0332908e-02, 2.0333224e-02, 2.0333536e-02, 2.0333845e-02, 2.0334151e-02, 2.0334454e-02, 2.0334753e-02, 2.0335050e-02, 2.0335343e-02, 2.0335634e-02, 2.0335921e-02, 2.0336205e-02, 2.0336486e-02, 2.0336765e-02, 2.0337040e-02, 2.0337312e-02, 2.0337581e-02, 2.0337847e-02, 2.0338110e-02, 2.0338370e-02, 2.0338627e-02, 2.0338881e-02, 2.0339132e-02, 2.0339379e-02, 2.0339624e-02, 2.0339866e-02, 2.0340105e-02, 2.0340341e-02, 2.0340573e-02, 2.0340803e-02, 2.0341029e-02, 2.0341253e-02, 2.0341473e-02, 2.0341691e-02, 2.0341905e-02, 2.0342116e-02, 2.0342324e-02, 2.0342528e-02, 2.0342730e-02, 2.0342929e-02, 2.0343124e-02, 2.0343316e-02, 2.0343506e-02, 2.0343692e-02, 2.0343875e-02, 2.0344054e-02, 2.0344231e-02, 2.0344405e-02, 2.0344575e-02, 2.0344743e-02, 2.0344907e-02, 2.0345068e-02, 2.0345226e-02, 2.0345382e-02, 2.0345534e-02, 2.0345683e-02, 2.0345829e-02, 2.0345972e-02, 2.0346112e-02, 2.0346249e-02},
- continuous = true,
- nFuture=1,
- nPast=900);
-
-end MinimumPhaseInterpolator;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/MinimumPhaseInterpolator/package.order b/Noise 1.0 Beta.1/Examples/RailIrregularities/MinimumPhaseInterpolator/package.order
deleted file mode 100644
index e69de29b..00000000
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Displacement.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Displacement.mo
deleted file mode 100644
index fa167ac1..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Displacement.mo
+++ /dev/null
@@ -1,39 +0,0 @@
-within Noise.Examples.RailIrregularities.Parts;
-model Displacement "Inserts a fixed displacement"
- extends Modelica.Mechanics.Translational.Interfaces.PartialTwoFlanges;
- Modelica.Mechanics.Translational.Sources.Position position(useSupport=true)
- annotation (Placement(transformation(extent={{10,10},{30,30}})));
- Modelica.Blocks.Interfaces.RealInput u annotation (Placement(transformation(
- extent={{-20,-20},{20,20}},
- rotation=-90,
- origin={0,120}), iconTransformation(
- extent={{-20,-20},{20,20}},
- rotation=-90,
- origin={0,24})));
-equation
- connect(position.support, flange_a) annotation (Line(
- points={{20,10},{20,0},{-100,0}},
- color={0,0,0},
- pattern=LinePattern.None,
- smooth=Smooth.None));
- connect(position.flange, flange_b) annotation (Line(
- points={{30,20},{40,20},{40,0},{100,0}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(u, position.s_ref) annotation (Line(
- points={{0,120},{0,20},{8,20}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics), Icon(coordinateSystem(
- preserveAspectRatio=false, extent={{-100,-100},{100,100}}), graphics={
- Line(
- points={{-70,10},{-90,0},{-70,-10},{-90,0},{90,0},{70,10},{90,0},{70,-10}},
- color={0,0,0},
- smooth=Smooth.None),
- Text(
- extent={{-150,120},{150,80}},
- textString="%name",
- lineColor={0,0,255})}));
-
-end Displacement;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Irregularity.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Irregularity.mo
deleted file mode 100644
index 480ed116..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/Irregularity.mo
+++ /dev/null
@@ -1,47 +0,0 @@
-within Noise.Examples.RailIrregularities.Parts;
-model Irregularity "Source of track irregularity"
- extends Noise.Examples.RailIrregularities.Comparisons.FilterAndConvolution(
- doMinimum = true, doZero = false, doFilter = false, doTime = false);
- extends Modelica.Blocks.Interfaces.SO;
-equation
- assert( doMinimum and not doZero and not doFilter and not doTime
- or not doMinimum and doZero and not doFilter and not doTime
- or not doMinimum and not doZero and doFilter and not doTime
- or not doMinimum and not doZero and not doFilter and doTime, "May only use one noise generator!");
- connect(spaceDomainNoiseZero.y, y) annotation (Line(
- points={{1,70},{50,70},{50,0},{110,0}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(spaceDomainNoiseMinimum.y, y) annotation (Line(
- points={{1,30},{50,30},{50,0},{110,0}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(spaceDomainFilter.y, y) annotation (Line(
- points={{41,-10},{50,-10},{50,0},{110,0}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(timeDomainFilter.y, y) annotation (Line(
- points={{41,-50},{50,-50},{50,0},{110,0}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics), Icon(coordinateSystem(
- preserveAspectRatio=false, extent={{-100,-100},{100,100}}), graphics=
- {
- Line(
- points={{-80,80},{-80,-80},{80,-80}},
- color={0,0,0},
- smooth=Smooth.None),
- Line(
- points={{-76,46},{-22,46},{42,-20},{74,-54}},
- color={0,0,255},
- smooth=Smooth.Bezier),
- Line(
- points={{-76,60},{-10,60},{38,4},{74,-40}},
- color={255,0,0},
- smooth=Smooth.Bezier),
- Line(
- points={{-76,32},{-40,32},{12,-8},{74,-68}},
- color={0,127,0},
- smooth=Smooth.Bezier)}));
-end Irregularity;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/QuarterRailwayCar.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/QuarterRailwayCar.mo
deleted file mode 100644
index 350209ea..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/QuarterRailwayCar.mo
+++ /dev/null
@@ -1,92 +0,0 @@
-within Noise.Examples.RailIrregularities.Parts;
-model QuarterRailwayCar "A quarter of a railway car"
- extends Modelica.Mechanics.Translational.Interfaces.PartialTwoFlanges;
- Modelica.Mechanics.Translational.Components.SpringDamper contact(c=990e6, d=100e3,
- stateSelect=StateSelect.never)
- annotation (Placement(transformation(
- extent={{-10,-10},{10,10}},
- rotation=0,
- origin={-60,0})));
- Modelica.Mechanics.Translational.Components.Mass wheel(
- s(fixed=true),
- v(fixed=true),
- stateSelect=StateSelect.always,
- m=1250) annotation (Placement(transformation(
- extent={{-10,-10},{10,10}},
- rotation=0,
- origin={-20,0})));
- Modelica.Mechanics.Translational.Components.SpringDamper suspension(c=0.175e6,
- d=10.5e3) annotation (Placement(transformation(
- extent={{-10,-10},{10,10}},
- rotation=0,
- origin={20,0})));
- Modelica.Mechanics.Translational.Components.Mass body(
- s(fixed=true),
- v(fixed=true),
- stateSelect=StateSelect.always,
- m=6750) annotation (Placement(transformation(
- extent={{-10,-10},{10,10}},
- rotation=0,
- origin={60,0})));
-equation
- connect(wheel.flange_a,contact. flange_b) annotation (Line(
- points={{-30,0},{-50,0}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(suspension.flange_a,wheel. flange_b) annotation (Line(
- points={{10,0},{-10,0}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(body.flange_a,suspension. flange_b) annotation (Line(
- points={{50,0},{30,0}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(body.flange_b, flange_b) annotation (Line(
- points={{70,0},{100,0}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(contact.flange_a, flange_a) annotation (Line(
- points={{-70,0},{-100,0}},
- color={0,127,0},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics), Icon(coordinateSystem(
- preserveAspectRatio=false, extent={{-100,-100},{100,100}}), graphics=
- {
- Ellipse(
- extent={{-100,40},{-20,-40}},
- fillPattern=FillPattern.Solid,
- fillColor={135,135,135},
- pattern=LinePattern.None,
- lineColor={0,0,0}),
- Ellipse(
- extent={{-96,36},{-24,-36}},
- lineColor={0,0,0},
- fillColor={135,135,135},
- fillPattern=FillPattern.Sphere),
- Rectangle(
- extent={{-60,-30},{60,30}},
- lineColor={0,0,0},
- fillPattern=FillPattern.Sphere,
- fillColor={255,255,255},
- origin={70,0},
- rotation=90),
- Line(
- points={{40,40},{28,40},{24,50},{18,28},{12,50},{6,28},{0,50},{-6,28},
- {-10,40},{-20,40},{-20,-40},{40,-40}},
- color={0,0,0},
- smooth=Smooth.None),
- Line(
- points={{30,-30},{-10,-30},{-10,-50},{30,-50}},
- color={0,0,0},
- smooth=Smooth.None),
- Rectangle(
- extent={{-10,-30},{20,-50}},
- lineColor={0,0,0},
- fillColor={135,135,135},
- fillPattern=FillPattern.Solid),
- Text(
- extent={{-150,120},{150,80}},
- textString="%name",
- lineColor={0,0,255})}));
-end QuarterRailwayCar;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/SimpleRailwayTrack.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/SimpleRailwayTrack.mo
deleted file mode 100644
index c91e3f34..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/SimpleRailwayTrack.mo
+++ /dev/null
@@ -1,53 +0,0 @@
-within Noise.Examples.RailIrregularities.Parts;
-model SimpleRailwayTrack "A simple railway track model"
- extends Modelica.Mechanics.Translational.Interfaces.PartialTwoFlanges;
- Modelica.Mechanics.Translational.Components.Mass track(
- L=0,
- m=165,
- v(start=0),
- s(start=0)) annotation (Placement(transformation(
- extent={{-10,-10},{10,10}},
- rotation=0,
- origin={40,0})));
- Modelica.Mechanics.Translational.Components.SpringDamper
- track_bed(
- d=9.4e7,
- v_rel(start=0),
- s_rel(start=-2.2548285e-4),
- c=7.5e7) annotation (Placement(transformation(
- extent={{-10,-10},{10,10}},
- rotation=0,
- origin={-40,0})));
-equation
- connect(track.flange_a, track_bed.flange_b) annotation (Line(
- points={{30,0},{-30,0}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(track_bed.flange_a, flange_a) annotation (Line(
- points={{-50,0},{-100,0}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(track.flange_b, flange_b) annotation (Line(
- points={{50,0},{100,0},{100,0}},
- color={0,127,0},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics), Icon(coordinateSystem(
- preserveAspectRatio=false, extent={{-100,-100},{100,100}}), graphics={
- Rectangle(
- extent={{-100,60},{-60,-60}},
- lineColor={0,0,0},
- fillColor={135,135,135},
- fillPattern=FillPattern.Solid), Polygon(
- points={{-60,50},{-40,50},{-30,20},{60,10},{66,20},{80,20},{90,10},{90,
- -10},{80,-20},{66,-20},{60,-10},{-30,-20},{-40,-50},{-60,-50},{-60,
- 50}},
- lineColor={0,0,0},
- smooth=Smooth.None,
- fillColor={215,215,215},
- fillPattern=FillPattern.Solid),
- Text(
- extent={{-150,120},{150,80}},
- textString="%name",
- lineColor={0,0,255})}));
-end SimpleRailwayTrack;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.mo
deleted file mode 100644
index 4251bfb6..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.mo
+++ /dev/null
@@ -1,4 +0,0 @@
-within Noise.Examples.RailIrregularities;
-package Parts "Some parts required for this example"
-extends Modelica.Icons.UtilitiesPackage;
-end Parts;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.order b/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.order
deleted file mode 100644
index 2534f4ea..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/Parts/package.order
+++ /dev/null
@@ -1,4 +0,0 @@
-QuarterRailwayCar
-SimpleRailwayTrack
-Displacement
-Irregularity
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/TrainOnTrack.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/TrainOnTrack.mo
deleted file mode 100644
index 34c39bbd..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/TrainOnTrack.mo
+++ /dev/null
@@ -1,64 +0,0 @@
-within Noise.Examples.RailIrregularities;
-model TrainOnTrack
- "This examples simulates a simple train on a track with irregularities"
- extends Modelica.Icons.Example;
- Modelica.Mechanics.Translational.Components.Fixed
- earth
- annotation (Placement(transformation(extent={{-10,-90},{10,-70}})));
- Parts.SimpleRailwayTrack simpleRailwayTrack annotation (Placement(
- transformation(
- extent={{-10,-10},{10,10}},
- rotation=90,
- origin={0,-40})));
- Parts.QuarterRailwayCar quarterRailwayCar annotation (Placement(
- transformation(
- extent={{-10,-10},{10,10}},
- rotation=90,
- origin={0,40})));
- Parts.Displacement displacement(position(v(fixed=true), a(fixed=true)))
- annotation (Placement(transformation(
- extent={{-10,-10},{10,10}},
- rotation=90,
- origin={0,0})));
- Parts.Irregularity irregularity
- annotation (Placement(transformation(extent={{-60,-10},{-40,10}})));
- Modelica.Mechanics.Translational.Sensors.AccSensor accSensor
- annotation (Placement(transformation(extent={{40,80},{60,100}})));
- Modelica.Mechanics.Translational.Sensors.PositionSensor positionSensor
- annotation (Placement(transformation(extent={{40,60},{60,80}})));
-equation
- connect(quarterRailwayCar.flange_a, displacement.flange_b) annotation (Line(
- points={{0,30},{0,10}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(displacement.flange_a, simpleRailwayTrack.flange_b) annotation (Line(
- points={{0,-10},{0,-30}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(simpleRailwayTrack.flange_a, earth.flange) annotation (Line(
- points={{0,-50},{0,-80}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(irregularity.y, displacement.u) annotation (Line(
- points={{-39,0},{-2.4,0}},
- color={0,0,127},
- smooth=Smooth.Bezier));
- connect(positionSensor.flange, quarterRailwayCar.flange_b) annotation (Line(
- points={{40,70},{0,70},{0,50}},
- color={0,127,0},
- smooth=Smooth.None));
- connect(accSensor.flange, quarterRailwayCar.flange_b) annotation (Line(
- points={{40,90},{0,90},{0,50}},
- color={0,127,0},
- smooth=Smooth.None));
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics));
-
-initial equation
- simpleRailwayTrack.track.a = 0;
- //simpleRailwayTrack.track.v = 0;
- quarterRailwayCar.wheel.a = 0;
- //quarterRailwayCar.wheel.v = 0;
- quarterRailwayCar.body.a = 0;
- //quarterRailwayCar.body.v = 0;
-end TrainOnTrack;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/ZeroPhaseInterpolator/package.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/ZeroPhaseInterpolator/package.mo
deleted file mode 100644
index 1eb754cd..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/ZeroPhaseInterpolator/package.mo
+++ /dev/null
@@ -1,12 +0,0 @@
-within Noise.Examples.RailIrregularities;
-package ZeroPhaseInterpolator "Provides a filter function for rail irregularities (zero phase)"
-
-
- extends Interpolators.StepResponse(
- T = { -6.1600000e+01, -6.1500000e+01, -6.1400000e+01, -6.1300000e+01, -6.1200000e+01, -6.1100000e+01, -6.1000000e+01, -6.0900000e+01, -6.0800000e+01, -6.0700000e+01, -6.0600000e+01, -6.0500000e+01, -6.0400000e+01, -6.0300000e+01, -6.0200000e+01, -6.0100000e+01, -6.0000000e+01, -5.9900000e+01, -5.9800000e+01, -5.9700000e+01, -5.9600000e+01, -5.9500000e+01, -5.9400000e+01, -5.9300000e+01, -5.9200000e+01, -5.9100000e+01, -5.9000000e+01, -5.8900000e+01, -5.8800000e+01, -5.8700000e+01, -5.8600000e+01, -5.8500000e+01, -5.8400000e+01, -5.8300000e+01, -5.8200000e+01, -5.8100000e+01, -5.8000000e+01, -5.7900000e+01, -5.7800000e+01, -5.7700000e+01, -5.7600000e+01, -5.7500000e+01, -5.7400000e+01, -5.7300000e+01, -5.7200000e+01, -5.7100000e+01, -5.7000000e+01, -5.6900000e+01, -5.6800000e+01, -5.6700000e+01, -5.6600000e+01, -5.6500000e+01, -5.6400000e+01, -5.6300000e+01, -5.6200000e+01, -5.6100000e+01, -5.6000000e+01, -5.5900000e+01, -5.5800000e+01, -5.5700000e+01, -5.5600000e+01, -5.5500000e+01, -5.5400000e+01, -5.5300000e+01, -5.5200000e+01, -5.5100000e+01, -5.5000000e+01, -5.4900000e+01, -5.4800000e+01, -5.4700000e+01, -5.4600000e+01, -5.4500000e+01, -5.4400000e+01, -5.4300000e+01, -5.4200000e+01, -5.4100000e+01, -5.4000000e+01, -5.3900000e+01, -5.3800000e+01, -5.3700000e+01, -5.3600000e+01, -5.3500000e+01, -5.3400000e+01, -5.3300000e+01, -5.3200000e+01, -5.3100000e+01, -5.3000000e+01, -5.2900000e+01, -5.2800000e+01, -5.2700000e+01, -5.2600000e+01, -5.2500000e+01, -5.2400000e+01, -5.2300000e+01, -5.2200000e+01, -5.2100000e+01, -5.2000000e+01, -5.1900000e+01, -5.1800000e+01, -5.1700000e+01, -5.1600000e+01, -5.1500000e+01, -5.1400000e+01, -5.1300000e+01, -5.1200000e+01, -5.1100000e+01, -5.1000000e+01, -5.0900000e+01, -5.0800000e+01, -5.0700000e+01, -5.0600000e+01, -5.0500000e+01, -5.0400000e+01, -5.0300000e+01, -5.0200000e+01, -5.0100000e+01, -5.0000000e+01, -4.9900000e+01, -4.9800000e+01, -4.9700000e+01, -4.9600000e+01, -4.9500000e+01, -4.9400000e+01, -4.9300000e+01, -4.9200000e+01, -4.9100000e+01, -4.9000000e+01, -4.8900000e+01, -4.8800000e+01, -4.8700000e+01, -4.8600000e+01, -4.8500000e+01, -4.8400000e+01, -4.8300000e+01, -4.8200000e+01, -4.8100000e+01, -4.8000000e+01, -4.7900000e+01, -4.7800000e+01, -4.7700000e+01, -4.7600000e+01, -4.7500000e+01, -4.7400000e+01, -4.7300000e+01, -4.7200000e+01, -4.7100000e+01, -4.7000000e+01, -4.6900000e+01, -4.6800000e+01, -4.6700000e+01, -4.6600000e+01, -4.6500000e+01, -4.6400000e+01, -4.6300000e+01, -4.6200000e+01, -4.6100000e+01, -4.6000000e+01, -4.5900000e+01, -4.5800000e+01, -4.5700000e+01, -4.5600000e+01, -4.5500000e+01, -4.5400000e+01, -4.5300000e+01, -4.5200000e+01, -4.5100000e+01, -4.5000000e+01, -4.4900000e+01, -4.4800000e+01, -4.4700000e+01, -4.4600000e+01, -4.4500000e+01, -4.4400000e+01, -4.4300000e+01, -4.4200000e+01, -4.4100000e+01, -4.4000000e+01, -4.3900000e+01, -4.3800000e+01, -4.3700000e+01, -4.3600000e+01, -4.3500000e+01, -4.3400000e+01, -4.3300000e+01, -4.3200000e+01, -4.3100000e+01, -4.3000000e+01, -4.2900000e+01, -4.2800000e+01, -4.2700000e+01, -4.2600000e+01, -4.2500000e+01, -4.2400000e+01, -4.2300000e+01, -4.2200000e+01, -4.2100000e+01, -4.2000000e+01, -4.1900000e+01, -4.1800000e+01, -4.1700000e+01, -4.1600000e+01, -4.1500000e+01, -4.1400000e+01, -4.1300000e+01, -4.1200000e+01, -4.1100000e+01, -4.1000000e+01, -4.0900000e+01, -4.0800000e+01, -4.0700000e+01, -4.0600000e+01, -4.0500000e+01, -4.0400000e+01, -4.0300000e+01, -4.0200000e+01, -4.0100000e+01, -4.0000000e+01, -3.9900000e+01, -3.9800000e+01, -3.9700000e+01, -3.9600000e+01, -3.9500000e+01, -3.9400000e+01, -3.9300000e+01, -3.9200000e+01, -3.9100000e+01, -3.9000000e+01, -3.8900000e+01, -3.8800000e+01, -3.8700000e+01, -3.8600000e+01, -3.8500000e+01, -3.8400000e+01, -3.8300000e+01, -3.8200000e+01, -3.8100000e+01, -3.8000000e+01, -3.7900000e+01, -3.7800000e+01, -3.7700000e+01, -3.7600000e+01, -3.7500000e+01, -3.7400000e+01, -3.7300000e+01, -3.7200000e+01, -3.7100000e+01, -3.7000000e+01, -3.6900000e+01, -3.6800000e+01, -3.6700000e+01, -3.6600000e+01, -3.6500000e+01, -3.6400000e+01, -3.6300000e+01, -3.6200000e+01, -3.6100000e+01, -3.6000000e+01, -3.5900000e+01, -3.5800000e+01, -3.5700000e+01, -3.5600000e+01, -3.5500000e+01, -3.5400000e+01, -3.5300000e+01, -3.5200000e+01, -3.5100000e+01, -3.5000000e+01, -3.4900000e+01, -3.4800000e+01, -3.4700000e+01, -3.4600000e+01, -3.4500000e+01, -3.4400000e+01, -3.4300000e+01, -3.4200000e+01, -3.4100000e+01, -3.4000000e+01, -3.3900000e+01, -3.3800000e+01, -3.3700000e+01, -3.3600000e+01, -3.3500000e+01, -3.3400000e+01, -3.3300000e+01, -3.3200000e+01, -3.3100000e+01, -3.3000000e+01, -3.2900000e+01, -3.2800000e+01, -3.2700000e+01, -3.2600000e+01, -3.2500000e+01, -3.2400000e+01, -3.2300000e+01, -3.2200000e+01, -3.2100000e+01, -3.2000000e+01, -3.1900000e+01, -3.1800000e+01, -3.1700000e+01, -3.1600000e+01, -3.1500000e+01, -3.1400000e+01, -3.1300000e+01, -3.1200000e+01, -3.1100000e+01, -3.1000000e+01, -3.0900000e+01, -3.0800000e+01, -3.0700000e+01, -3.0600000e+01, -3.0500000e+01, -3.0400000e+01, -3.0300000e+01, -3.0200000e+01, -3.0100000e+01, -3.0000000e+01, -2.9900000e+01, -2.9800000e+01, -2.9700000e+01, -2.9600000e+01, -2.9500000e+01, -2.9400000e+01, -2.9300000e+01, -2.9200000e+01, -2.9100000e+01, -2.9000000e+01, -2.8900000e+01, -2.8800000e+01, -2.8700000e+01, -2.8600000e+01, -2.8500000e+01, -2.8400000e+01, -2.8300000e+01, -2.8200000e+01, -2.8100000e+01, -2.8000000e+01, -2.7900000e+01, -2.7800000e+01, -2.7700000e+01, -2.7600000e+01, -2.7500000e+01, -2.7400000e+01, -2.7300000e+01, -2.7200000e+01, -2.7100000e+01, -2.7000000e+01, -2.6900000e+01, -2.6800000e+01, -2.6700000e+01, -2.6600000e+01, -2.6500000e+01, -2.6400000e+01, -2.6300000e+01, -2.6200000e+01, -2.6100000e+01, -2.6000000e+01, -2.5900000e+01, -2.5800000e+01, -2.5700000e+01, -2.5600000e+01, -2.5500000e+01, -2.5400000e+01, -2.5300000e+01, -2.5200000e+01, -2.5100000e+01, -2.5000000e+01, -2.4900000e+01, -2.4800000e+01, -2.4700000e+01, -2.4600000e+01, -2.4500000e+01, -2.4400000e+01, -2.4300000e+01, -2.4200000e+01, -2.4100000e+01, -2.4000000e+01, -2.3900000e+01, -2.3800000e+01, -2.3700000e+01, -2.3600000e+01, -2.3500000e+01, -2.3400000e+01, -2.3300000e+01, -2.3200000e+01, -2.3100000e+01, -2.3000000e+01, -2.2900000e+01, -2.2800000e+01, -2.2700000e+01, -2.2600000e+01, -2.2500000e+01, -2.2400000e+01, -2.2300000e+01, -2.2200000e+01, -2.2100000e+01, -2.2000000e+01, -2.1900000e+01, -2.1800000e+01, -2.1700000e+01, -2.1600000e+01, -2.1500000e+01, -2.1400000e+01, -2.1300000e+01, -2.1200000e+01, -2.1100000e+01, -2.1000000e+01, -2.0900000e+01, -2.0800000e+01, -2.0700000e+01, -2.0600000e+01, -2.0500000e+01, -2.0400000e+01, -2.0300000e+01, -2.0200000e+01, -2.0100000e+01, -2.0000000e+01, -1.9900000e+01, -1.9800000e+01, -1.9700000e+01, -1.9600000e+01, -1.9500000e+01, -1.9400000e+01, -1.9300000e+01, -1.9200000e+01, -1.9100000e+01, -1.9000000e+01, -1.8900000e+01, -1.8800000e+01, -1.8700000e+01, -1.8600000e+01, -1.8500000e+01, -1.8400000e+01, -1.8300000e+01, -1.8200000e+01, -1.8100000e+01, -1.8000000e+01, -1.7900000e+01, -1.7800000e+01, -1.7700000e+01, -1.7600000e+01, -1.7500000e+01, -1.7400000e+01, -1.7300000e+01, -1.7200000e+01, -1.7100000e+01, -1.7000000e+01, -1.6900000e+01, -1.6800000e+01, -1.6700000e+01, -1.6600000e+01, -1.6500000e+01, -1.6400000e+01, -1.6300000e+01, -1.6200000e+01, -1.6100000e+01, -1.6000000e+01, -1.5900000e+01, -1.5800000e+01, -1.5700000e+01, -1.5600000e+01, -1.5500000e+01, -1.5400000e+01, -1.5300000e+01, -1.5200000e+01, -1.5100000e+01, -1.5000000e+01, -1.4900000e+01, -1.4800000e+01, -1.4700000e+01, -1.4600000e+01, -1.4500000e+01, -1.4400000e+01, -1.4300000e+01, -1.4200000e+01, -1.4100000e+01, -1.4000000e+01, -1.3900000e+01, -1.3800000e+01, -1.3700000e+01, -1.3600000e+01, -1.3500000e+01, -1.3400000e+01, -1.3300000e+01, -1.3200000e+01, -1.3100000e+01, -1.3000000e+01, -1.2900000e+01, -1.2800000e+01, -1.2700000e+01, -1.2600000e+01, -1.2500000e+01, -1.2400000e+01, -1.2300000e+01, -1.2200000e+01, -1.2100000e+01, -1.2000000e+01, -1.1900000e+01, -1.1800000e+01, -1.1700000e+01, -1.1600000e+01, -1.1500000e+01, -1.1400000e+01, -1.1300000e+01, -1.1200000e+01, -1.1100000e+01, -1.1000000e+01, -1.0900000e+01, -1.0800000e+01, -1.0700000e+01, -1.0600000e+01, -1.0500000e+01, -1.0400000e+01, -1.0300000e+01, -1.0200000e+01, -1.0100000e+01, -1.0000000e+01, -9.9000000e+00, -9.8000000e+00, -9.7000000e+00, -9.6000000e+00, -9.5000000e+00, -9.4000000e+00, -9.3000000e+00, -9.2000000e+00, -9.1000000e+00, -9.0000000e+00, -8.9000000e+00, -8.8000000e+00, -8.7000000e+00, -8.6000000e+00, -8.5000000e+00, -8.4000000e+00, -8.3000000e+00, -8.2000000e+00, -8.1000000e+00, -8.0000000e+00, -7.9000000e+00, -7.8000000e+00, -7.7000000e+00, -7.6000000e+00, -7.5000000e+00, -7.4000000e+00, -7.3000000e+00, -7.2000000e+00, -7.1000000e+00, -7.0000000e+00, -6.9000000e+00, -6.8000000e+00, -6.7000000e+00, -6.6000000e+00, -6.5000000e+00, -6.4000000e+00, -6.3000000e+00, -6.2000000e+00, -6.1000000e+00, -6.0000000e+00, -5.9000000e+00, -5.8000000e+00, -5.7000000e+00, -5.6000000e+00, -5.5000000e+00, -5.4000000e+00, -5.3000000e+00, -5.2000000e+00, -5.1000000e+00, -5.0000000e+00, -4.9000000e+00, -4.8000000e+00, -4.7000000e+00, -4.6000000e+00, -4.5000000e+00, -4.4000000e+00, -4.3000000e+00, -4.2000000e+00, -4.1000000e+00, -4.0000000e+00, -3.9000000e+00, -3.8000000e+00, -3.7000000e+00, -3.6000000e+00, -3.5000000e+00, -3.4000000e+00, -3.3000000e+00, -3.2000000e+00, -3.1000000e+00, -3.0000000e+00, -2.9000000e+00, -2.8000000e+00, -2.7000000e+00, -2.6000000e+00, -2.5000000e+00, -2.4000000e+00, -2.3000000e+00, -2.2000000e+00, -2.1000000e+00, -2.0000000e+00, -1.9000000e+00, -1.8000000e+00, -1.7000000e+00, -1.6000000e+00, -1.5000000e+00, -1.4000000e+00, -1.3000000e+00, -1.2000000e+00, -1.1000000e+00, -1.0000000e+00, -9.0000000e-01, -8.0000000e-01, -7.0000000e-01, -6.0000000e-01, -5.0000000e-01, -4.0000000e-01, -3.0000000e-01, -2.0000000e-01, -1.0000000e-01, 0.0000000e+00, 1.0000000e-01, 2.0000000e-01, 3.0000000e-01, 4.0000000e-01, 5.0000000e-01, 6.0000000e-01, 7.0000000e-01, 8.0000000e-01, 9.0000000e-01, 1.0000000e+00, 1.1000000e+00, 1.2000000e+00, 1.3000000e+00, 1.4000000e+00, 1.5000000e+00, 1.6000000e+00, 1.7000000e+00, 1.8000000e+00, 1.9000000e+00, 2.0000000e+00, 2.1000000e+00, 2.2000000e+00, 2.3000000e+00, 2.4000000e+00, 2.5000000e+00, 2.6000000e+00, 2.7000000e+00, 2.8000000e+00, 2.9000000e+00, 3.0000000e+00, 3.1000000e+00, 3.2000000e+00, 3.3000000e+00, 3.4000000e+00, 3.5000000e+00, 3.6000000e+00, 3.7000000e+00, 3.8000000e+00, 3.9000000e+00, 4.0000000e+00, 4.1000000e+00, 4.2000000e+00, 4.3000000e+00, 4.4000000e+00, 4.5000000e+00, 4.6000000e+00, 4.7000000e+00, 4.8000000e+00, 4.9000000e+00, 5.0000000e+00, 5.1000000e+00, 5.2000000e+00, 5.3000000e+00, 5.4000000e+00, 5.5000000e+00, 5.6000000e+00, 5.7000000e+00, 5.8000000e+00, 5.9000000e+00, 6.0000000e+00, 6.1000000e+00, 6.2000000e+00, 6.3000000e+00, 6.4000000e+00, 6.5000000e+00, 6.6000000e+00, 6.7000000e+00, 6.8000000e+00, 6.9000000e+00, 7.0000000e+00, 7.1000000e+00, 7.2000000e+00, 7.3000000e+00, 7.4000000e+00, 7.5000000e+00, 7.6000000e+00, 7.7000000e+00, 7.8000000e+00, 7.9000000e+00, 8.0000000e+00, 8.1000000e+00, 8.2000000e+00, 8.3000000e+00, 8.4000000e+00, 8.5000000e+00, 8.6000000e+00, 8.7000000e+00, 8.8000000e+00, 8.9000000e+00, 9.0000000e+00, 9.1000000e+00, 9.2000000e+00, 9.3000000e+00, 9.4000000e+00, 9.5000000e+00, 9.6000000e+00, 9.7000000e+00, 9.8000000e+00, 9.9000000e+00, 1.0000000e+01, 1.0100000e+01, 1.0200000e+01, 1.0300000e+01, 1.0400000e+01, 1.0500000e+01, 1.0600000e+01, 1.0700000e+01, 1.0800000e+01, 1.0900000e+01, 1.1000000e+01, 1.1100000e+01, 1.1200000e+01, 1.1300000e+01, 1.1400000e+01, 1.1500000e+01, 1.1600000e+01, 1.1700000e+01, 1.1800000e+01, 1.1900000e+01, 1.2000000e+01, 1.2100000e+01, 1.2200000e+01, 1.2300000e+01, 1.2400000e+01, 1.2500000e+01, 1.2600000e+01, 1.2700000e+01, 1.2800000e+01, 1.2900000e+01, 1.3000000e+01, 1.3100000e+01, 1.3200000e+01, 1.3300000e+01, 1.3400000e+01, 1.3500000e+01, 1.3600000e+01, 1.3700000e+01, 1.3800000e+01, 1.3900000e+01, 1.4000000e+01, 1.4100000e+01, 1.4200000e+01, 1.4300000e+01, 1.4400000e+01, 1.4500000e+01, 1.4600000e+01, 1.4700000e+01, 1.4800000e+01, 1.4900000e+01, 1.5000000e+01, 1.5100000e+01, 1.5200000e+01, 1.5300000e+01, 1.5400000e+01, 1.5500000e+01, 1.5600000e+01, 1.5700000e+01, 1.5800000e+01, 1.5900000e+01, 1.6000000e+01, 1.6100000e+01, 1.6200000e+01, 1.6300000e+01, 1.6400000e+01, 1.6500000e+01, 1.6600000e+01, 1.6700000e+01, 1.6800000e+01, 1.6900000e+01, 1.7000000e+01, 1.7100000e+01, 1.7200000e+01, 1.7300000e+01, 1.7400000e+01, 1.7500000e+01, 1.7600000e+01, 1.7700000e+01, 1.7800000e+01, 1.7900000e+01, 1.8000000e+01, 1.8100000e+01, 1.8200000e+01, 1.8300000e+01, 1.8400000e+01, 1.8500000e+01, 1.8600000e+01, 1.8700000e+01, 1.8800000e+01, 1.8900000e+01, 1.9000000e+01, 1.9100000e+01, 1.9200000e+01, 1.9300000e+01, 1.9400000e+01, 1.9500000e+01, 1.9600000e+01, 1.9700000e+01, 1.9800000e+01, 1.9900000e+01, 2.0000000e+01, 2.0100000e+01, 2.0200000e+01, 2.0300000e+01, 2.0400000e+01, 2.0500000e+01, 2.0600000e+01, 2.0700000e+01, 2.0800000e+01, 2.0900000e+01, 2.1000000e+01, 2.1100000e+01, 2.1200000e+01, 2.1300000e+01, 2.1400000e+01, 2.1500000e+01, 2.1600000e+01, 2.1700000e+01, 2.1800000e+01, 2.1900000e+01, 2.2000000e+01, 2.2100000e+01, 2.2200000e+01, 2.2300000e+01, 2.2400000e+01, 2.2500000e+01, 2.2600000e+01, 2.2700000e+01, 2.2800000e+01, 2.2900000e+01, 2.3000000e+01, 2.3100000e+01, 2.3200000e+01, 2.3300000e+01, 2.3400000e+01, 2.3500000e+01, 2.3600000e+01, 2.3700000e+01, 2.3800000e+01, 2.3900000e+01, 2.4000000e+01, 2.4100000e+01, 2.4200000e+01, 2.4300000e+01, 2.4400000e+01, 2.4500000e+01, 2.4600000e+01, 2.4700000e+01, 2.4800000e+01, 2.4900000e+01, 2.5000000e+01, 2.5100000e+01, 2.5200000e+01, 2.5300000e+01, 2.5400000e+01, 2.5500000e+01, 2.5600000e+01, 2.5700000e+01, 2.5800000e+01, 2.5900000e+01, 2.6000000e+01, 2.6100000e+01, 2.6200000e+01, 2.6300000e+01, 2.6400000e+01, 2.6500000e+01, 2.6600000e+01, 2.6700000e+01, 2.6800000e+01, 2.6900000e+01, 2.7000000e+01, 2.7100000e+01, 2.7200000e+01, 2.7300000e+01, 2.7400000e+01, 2.7500000e+01, 2.7600000e+01, 2.7700000e+01, 2.7800000e+01, 2.7900000e+01, 2.8000000e+01, 2.8100000e+01, 2.8200000e+01, 2.8300000e+01, 2.8400000e+01, 2.8500000e+01, 2.8600000e+01, 2.8700000e+01, 2.8800000e+01, 2.8900000e+01, 2.9000000e+01, 2.9100000e+01, 2.9200000e+01, 2.9300000e+01, 2.9400000e+01, 2.9500000e+01, 2.9600000e+01, 2.9700000e+01, 2.9800000e+01, 2.9900000e+01, 3.0000000e+01, 3.0100000e+01, 3.0200000e+01, 3.0300000e+01, 3.0400000e+01, 3.0500000e+01, 3.0600000e+01, 3.0700000e+01, 3.0800000e+01, 3.0900000e+01, 3.1000000e+01, 3.1100000e+01, 3.1200000e+01, 3.1300000e+01, 3.1400000e+01, 3.1500000e+01, 3.1600000e+01, 3.1700000e+01, 3.1800000e+01, 3.1900000e+01, 3.2000000e+01, 3.2100000e+01, 3.2200000e+01, 3.2300000e+01, 3.2400000e+01, 3.2500000e+01, 3.2600000e+01, 3.2700000e+01, 3.2800000e+01, 3.2900000e+01, 3.3000000e+01, 3.3100000e+01, 3.3200000e+01, 3.3300000e+01, 3.3400000e+01, 3.3500000e+01, 3.3600000e+01, 3.3700000e+01, 3.3800000e+01, 3.3900000e+01, 3.4000000e+01, 3.4100000e+01, 3.4200000e+01, 3.4300000e+01, 3.4400000e+01, 3.4500000e+01, 3.4600000e+01, 3.4700000e+01, 3.4800000e+01, 3.4900000e+01, 3.5000000e+01, 3.5100000e+01, 3.5200000e+01, 3.5300000e+01, 3.5400000e+01, 3.5500000e+01, 3.5600000e+01, 3.5700000e+01, 3.5800000e+01, 3.5900000e+01, 3.6000000e+01, 3.6100000e+01, 3.6200000e+01, 3.6300000e+01, 3.6400000e+01, 3.6500000e+01, 3.6600000e+01, 3.6700000e+01, 3.6800000e+01, 3.6900000e+01, 3.7000000e+01, 3.7100000e+01, 3.7200000e+01, 3.7300000e+01, 3.7400000e+01, 3.7500000e+01, 3.7600000e+01, 3.7700000e+01, 3.7800000e+01, 3.7900000e+01, 3.8000000e+01, 3.8100000e+01, 3.8200000e+01, 3.8300000e+01, 3.8400000e+01, 3.8500000e+01, 3.8600000e+01, 3.8700000e+01, 3.8800000e+01, 3.8900000e+01, 3.9000000e+01, 3.9100000e+01, 3.9200000e+01, 3.9300000e+01, 3.9400000e+01, 3.9500000e+01, 3.9600000e+01, 3.9700000e+01, 3.9800000e+01, 3.9900000e+01, 4.0000000e+01, 4.0100000e+01, 4.0200000e+01, 4.0300000e+01, 4.0400000e+01, 4.0500000e+01, 4.0600000e+01, 4.0700000e+01, 4.0800000e+01, 4.0900000e+01, 4.1000000e+01, 4.1100000e+01, 4.1200000e+01, 4.1300000e+01, 4.1400000e+01, 4.1500000e+01, 4.1600000e+01, 4.1700000e+01, 4.1800000e+01, 4.1900000e+01, 4.2000000e+01, 4.2100000e+01, 4.2200000e+01, 4.2300000e+01, 4.2400000e+01, 4.2500000e+01, 4.2600000e+01, 4.2700000e+01, 4.2800000e+01, 4.2900000e+01, 4.3000000e+01, 4.3100000e+01, 4.3200000e+01, 4.3300000e+01, 4.3400000e+01, 4.3500000e+01, 4.3600000e+01, 4.3700000e+01, 4.3800000e+01, 4.3900000e+01, 4.4000000e+01, 4.4100000e+01, 4.4200000e+01, 4.4300000e+01, 4.4400000e+01, 4.4500000e+01, 4.4600000e+01, 4.4700000e+01, 4.4800000e+01, 4.4900000e+01, 4.5000000e+01, 4.5100000e+01, 4.5200000e+01, 4.5300000e+01, 4.5400000e+01, 4.5500000e+01, 4.5600000e+01, 4.5700000e+01, 4.5800000e+01, 4.5900000e+01, 4.6000000e+01, 4.6100000e+01, 4.6200000e+01, 4.6300000e+01, 4.6400000e+01, 4.6500000e+01, 4.6600000e+01, 4.6700000e+01, 4.6800000e+01, 4.6900000e+01, 4.7000000e+01, 4.7100000e+01, 4.7200000e+01, 4.7300000e+01, 4.7400000e+01, 4.7500000e+01, 4.7600000e+01, 4.7700000e+01, 4.7800000e+01, 4.7900000e+01, 4.8000000e+01, 4.8100000e+01, 4.8200000e+01, 4.8300000e+01, 4.8400000e+01, 4.8500000e+01, 4.8600000e+01, 4.8700000e+01, 4.8800000e+01, 4.8900000e+01, 4.9000000e+01, 4.9100000e+01, 4.9200000e+01, 4.9300000e+01, 4.9400000e+01, 4.9500000e+01, 4.9600000e+01, 4.9700000e+01, 4.9800000e+01, 4.9900000e+01, 5.0000000e+01, 5.0100000e+01, 5.0200000e+01, 5.0300000e+01, 5.0400000e+01, 5.0500000e+01, 5.0600000e+01, 5.0700000e+01, 5.0800000e+01, 5.0900000e+01, 5.1000000e+01, 5.1100000e+01, 5.1200000e+01, 5.1300000e+01, 5.1400000e+01, 5.1500000e+01, 5.1600000e+01, 5.1700000e+01, 5.1800000e+01, 5.1900000e+01, 5.2000000e+01, 5.2100000e+01, 5.2200000e+01, 5.2300000e+01, 5.2400000e+01, 5.2500000e+01, 5.2600000e+01, 5.2700000e+01, 5.2800000e+01, 5.2900000e+01, 5.3000000e+01, 5.3100000e+01, 5.3200000e+01, 5.3300000e+01, 5.3400000e+01, 5.3500000e+01, 5.3600000e+01, 5.3700000e+01, 5.3800000e+01, 5.3900000e+01, 5.4000000e+01, 5.4100000e+01, 5.4200000e+01, 5.4300000e+01, 5.4400000e+01, 5.4500000e+01, 5.4600000e+01, 5.4700000e+01, 5.4800000e+01, 5.4900000e+01, 5.5000000e+01, 5.5100000e+01, 5.5200000e+01, 5.5300000e+01, 5.5400000e+01, 5.5500000e+01, 5.5600000e+01, 5.5700000e+01, 5.5800000e+01, 5.5900000e+01, 5.6000000e+01, 5.6100000e+01, 5.6200000e+01, 5.6300000e+01, 5.6400000e+01, 5.6500000e+01, 5.6600000e+01, 5.6700000e+01, 5.6800000e+01, 5.6900000e+01, 5.7000000e+01, 5.7100000e+01, 5.7200000e+01, 5.7300000e+01, 5.7400000e+01, 5.7500000e+01, 5.7600000e+01, 5.7700000e+01, 5.7800000e+01, 5.7900000e+01, 5.8000000e+01, 5.8100000e+01, 5.8200000e+01, 5.8300000e+01, 5.8400000e+01, 5.8500000e+01, 5.8600000e+01, 5.8700000e+01, 5.8800000e+01, 5.8900000e+01, 5.9000000e+01, 5.9100000e+01, 5.9200000e+01, 5.9300000e+01, 5.9400000e+01, 5.9500000e+01, 5.9600000e+01, 5.9700000e+01, 5.9800000e+01, 5.9900000e+01, 6.0000000e+01, 6.0100000e+01, 6.0200000e+01, 6.0300000e+01, 6.0400000e+01, 6.0500000e+01, 6.0600000e+01, 6.0700000e+01, 6.0800000e+01, 6.0900000e+01, 6.1000000e+01, 6.1100000e+01, 6.1200000e+01, 6.1300000e+01, 6.1400000e+01, 6.1500000e+01},
- step = { 0.0000000e+00, 2.4006265e-07, 4.8295177e-07, 7.2866479e-07, 9.7718728e-07, 1.2285079e-06, 1.4826309e-06, 1.7395742e-06, 1.9993550e-06, 2.2619756e-06, 2.5274223e-06, 2.7956789e-06, 3.0667428e-06, 3.3406289e-06, 3.6173596e-06, 3.8969486e-06, 4.1793947e-06, 4.4646897e-06, 4.7528343e-06, 5.0438467e-06, 5.3377558e-06, 5.6345861e-06, 5.9343474e-06, 6.2370398e-06, 6.5426686e-06, 6.8512552e-06, 7.1628327e-06, 7.4774306e-06, 7.7950618e-06, 8.1157254e-06, 8.4394219e-06, 8.7661681e-06, 9.0959991e-06, 9.4289540e-06, 9.7650592e-06, 1.0104324e-05, 1.0446751e-05, 1.0792355e-05, 1.1141171e-05, 1.1493241e-05, 1.1848601e-05, 1.2207265e-05, 1.2569237e-05, 1.2934525e-05, 1.3303153e-05, 1.3675156e-05, 1.4050562e-05, 1.4429386e-05, 1.4811629e-05, 1.5197295e-05, 1.5586405e-05, 1.5978991e-05, 1.6375085e-05, 1.6774703e-05, 1.7177841e-05, 1.7584493e-05, 1.7994669e-05, 1.8408400e-05, 1.8825724e-05, 1.9246667e-05, 1.9671233e-05, 2.0099417e-05, 2.0531221e-05, 2.0966668e-05, 2.1405793e-05, 2.1848624e-05, 2.2295170e-05, 2.2745428e-05, 2.3199393e-05, 2.3657078e-05, 2.4118504e-05, 2.4583691e-05, 2.5052642e-05, 2.5525340e-05, 2.6001774e-05, 2.6481946e-05, 2.6965880e-05, 2.7453603e-05, 2.7945129e-05, 2.8440454e-05, 2.8939572e-05, 2.9442495e-05, 2.9949262e-05, 3.0459926e-05, 3.0974534e-05, 3.1493113e-05, 3.2015677e-05, 3.2542251e-05, 3.3072879e-05, 3.3607626e-05, 3.4146559e-05, 3.4689730e-05, 3.5237180e-05, 3.5788958e-05, 3.6345129e-05, 3.6905780e-05, 3.7471004e-05, 3.8040874e-05, 3.8615449e-05, 3.9194790e-05, 3.9778975e-05, 4.0368104e-05, 4.0962285e-05, 4.1561611e-05, 4.2166151e-05, 4.2775962e-05, 4.3391115e-05, 4.4011702e-05, 4.4637834e-05, 4.5269612e-05, 4.5907118e-05, 4.6550412e-05, 4.7199559e-05, 4.7854640e-05, 4.8515757e-05, 4.9183010e-05, 4.9856481e-05, 5.0536230e-05, 5.1222318e-05, 5.1914818e-05, 5.2613824e-05, 5.3319428e-05, 5.4031704e-05, 5.4750702e-05, 5.5476468e-05, 5.6209057e-05, 5.6948552e-05, 5.7695043e-05, 5.8448602e-05, 5.9209272e-05, 5.9977075e-05, 6.0752038e-05, 6.1534208e-05, 6.2323651e-05, 6.3120431e-05, 6.3924584e-05, 6.4736132e-05, 6.5555093e-05, 6.6381512e-05, 6.7215455e-05, 6.8056996e-05, 6.8906195e-05, 6.9763093e-05, 7.0627727e-05, 7.1500157e-05, 7.2380464e-05, 7.3268740e-05, 7.4165062e-05, 7.5069482e-05, 7.5982044e-05, 7.6902806e-05, 7.7831859e-05, 7.8769313e-05, 7.9715269e-05, 8.0669805e-05, 8.1632981e-05, 8.2604868e-05, 8.3585567e-05, 8.4575209e-05, 8.5573930e-05, 8.6581846e-05, 8.7599055e-05, 8.8625652e-05, 8.9661753e-05, 9.0707500e-05, 9.1763045e-05, 9.2828523e-05, 9.3904044e-05, 9.4989707e-05, 9.6085630e-05, 9.7191956e-05, 9.8308841e-05, 9.9436422e-05, 1.0057481e-04, 1.0172408e-04, 1.0288432e-04, 1.0405567e-04, 1.0523823e-04, 1.0643212e-04, 1.0763743e-04, 1.0885421e-04, 1.1008249e-04, 1.1132234e-04, 1.1257386e-04, 1.1383713e-04, 1.1511222e-04, 1.1639916e-04, 1.1769797e-04, 1.1900868e-04, 1.2033135e-04, 1.2166604e-04, 1.2301280e-04, 1.2437166e-04, 1.2574260e-04, 1.2712565e-04, 1.2852086e-04, 1.2992829e-04, 1.3134800e-04, 1.3278004e-04, 1.3422441e-04, 1.3568117e-04, 1.3715038e-04, 1.3863214e-04, 1.4012658e-04, 1.4163377e-04, 1.4315377e-04, 1.4468664e-04, 1.4623247e-04, 1.4779138e-04, 1.4936352e-04, 1.5094898e-04, 1.5254786e-04, 1.5416022e-04, 1.5578615e-04, 1.5742577e-04, 1.5907924e-04, 1.6074671e-04, 1.6242831e-04, 1.6412415e-04, 1.6583436e-04, 1.6755911e-04, 1.6929861e-04, 1.7105304e-04, 1.7282259e-04, 1.7460739e-04, 1.7640761e-04, 1.7822345e-04, 1.8005513e-04, 1.8190291e-04, 1.8376700e-04, 1.8564758e-04, 1.8754482e-04, 1.8945892e-04, 1.9139013e-04, 1.9333869e-04, 1.9530486e-04, 1.9728882e-04, 1.9929076e-04, 2.0131086e-04, 2.0334934e-04, 2.0540644e-04, 2.0748241e-04, 2.0957745e-04, 2.1169175e-04, 2.1382549e-04, 2.1597890e-04, 2.1815223e-04, 2.2034573e-04, 2.2255961e-04, 2.2479404e-04, 2.2704920e-04, 2.2932529e-04, 2.3162256e-04, 2.3394126e-04, 2.3628158e-04, 2.3864369e-04, 2.4102770e-04, 2.4343377e-04, 2.4586208e-04, 2.4831286e-04, 2.5078632e-04, 2.5328263e-04, 2.5580193e-04, 2.5834438e-04, 2.6091015e-04, 2.6349948e-04, 2.6611256e-04, 2.6874958e-04, 2.7141068e-04, 2.7409600e-04, 2.7680573e-04, 2.7954009e-04, 2.8229929e-04, 2.8508351e-04, 2.8789291e-04, 2.9072762e-04, 2.9358784e-04, 2.9647384e-04, 2.9938590e-04, 3.0232429e-04, 3.0528922e-04, 3.0828089e-04, 3.1129949e-04, 3.1434532e-04, 3.1741868e-04, 3.2051989e-04, 3.2364924e-04, 3.2680695e-04, 3.2999328e-04, 3.3320848e-04, 3.3645287e-04, 3.3972675e-04, 3.4303041e-04, 3.4636408e-04, 3.4972800e-04, 3.5312247e-04, 3.5654782e-04, 3.6000440e-04, 3.6349251e-04, 3.6701239e-04, 3.7056430e-04, 3.7414849e-04, 3.7776535e-04, 3.8141526e-04, 3.8509863e-04, 3.8881580e-04, 3.9256708e-04, 3.9635278e-04, 4.0017329e-04, 4.0402906e-04, 4.0792053e-04, 4.1184810e-04, 4.1581213e-04, 4.1981293e-04, 4.2385085e-04, 4.2792628e-04, 4.3203958e-04, 4.3619107e-04, 4.4038103e-04, 4.4460970e-04, 4.4887739e-04, 4.5318447e-04, 4.5753131e-04, 4.6191823e-04, 4.6634548e-04, 4.7081328e-04, 4.7532186e-04, 4.7987156e-04, 4.8446273e-04, 4.8909574e-04, 4.9377088e-04, 4.9848837e-04, 5.0324844e-04, 5.0805136e-04, 5.1289747e-04, 5.1778715e-04, 5.2272073e-04, 5.2769853e-04, 5.3272085e-04, 5.3778805e-04, 5.4290060e-04, 5.4805897e-04, 5.5326363e-04, 5.5851500e-04, 5.6381349e-04, 5.6915960e-04, 5.7455389e-04, 5.7999700e-04, 5.8548952e-04, 5.9103201e-04, 5.9662495e-04, 6.0226889e-04, 6.0796448e-04, 6.1371248e-04, 6.1951365e-04, 6.2536871e-04, 6.3127829e-04, 6.3724304e-04, 6.4326365e-04, 6.4934089e-04, 6.5547558e-04, 6.6166847e-04, 6.6792027e-04, 6.7423168e-04, 6.8060343e-04, 6.8703636e-04, 6.9353131e-04, 7.0008909e-04, 7.0671042e-04, 7.1339595e-04, 7.2014638e-04, 7.2696246e-04, 7.3384499e-04, 7.4079472e-04, 7.4781224e-04, 7.5489806e-04, 7.6205265e-04, 7.6927657e-04, 7.7657046e-04, 7.8393496e-04, 7.9137061e-04, 7.9887789e-04, 8.0645723e-04, 8.1410916e-04, 8.2183431e-04, 8.2963339e-04, 8.3750707e-04, 8.4545596e-04, 8.5348063e-04, 8.6158169e-04, 8.6975986e-04, 8.7801588e-04, 8.8635046e-04, 8.9476419e-04, 9.0325758e-04, 9.1183121e-04, 9.2048577e-04, 9.2922205e-04, 9.3804083e-04, 9.4694280e-04, 9.5592857e-04, 9.6499875e-04, 9.7415409e-04, 9.8339546e-04, 9.9272380e-04, 1.0021400e-03, 1.0116448e-03, 1.0212389e-03, 1.0309233e-03, 1.0406989e-03, 1.0505669e-03, 1.0605284e-03, 1.0705845e-03, 1.0807362e-03, 1.0909848e-03, 1.1013314e-03, 1.1117775e-03, 1.1223245e-03, 1.1329736e-03, 1.1437261e-03, 1.1545834e-03, 1.1655467e-03, 1.1766178e-03, 1.1877982e-03, 1.1990893e-03, 1.2104925e-03, 1.2220091e-03, 1.2336404e-03, 1.2453881e-03, 1.2572538e-03, 1.2692393e-03, 1.2813457e-03, 1.2935745e-03, 1.3059268e-03, 1.3184041e-03, 1.3310079e-03, 1.3437395e-03, 1.3566001e-03, 1.3695909e-03, 1.3827128e-03, 1.3959672e-03, 1.4093554e-03, 1.4228786e-03, 1.4365383e-03, 1.4503356e-03, 1.4642720e-03, 1.4783489e-03, 1.4925683e-03, 1.5069319e-03, 1.5214414e-03, 1.5360983e-03, 1.5509038e-03, 1.5658596e-03, 1.5809674e-03, 1.5962292e-03, 1.6116470e-03, 1.6272224e-03, 1.6429569e-03, 1.6588521e-03, 1.6749097e-03, 1.6911318e-03, 1.7075205e-03, 1.7240778e-03, 1.7408057e-03, 1.7577062e-03, 1.7747814e-03, 1.7920340e-03, 1.8094662e-03, 1.8270804e-03, 1.8448786e-03, 1.8628632e-03, 1.8810366e-03, 1.8994018e-03, 1.9179616e-03, 1.9367185e-03, 1.9556749e-03, 1.9748329e-03, 1.9941946e-03, 2.0137627e-03, 2.0335401e-03, 2.0535294e-03, 2.0737331e-03, 2.0941532e-03, 2.1147915e-03, 2.1356500e-03, 2.1567310e-03, 2.1780371e-03, 2.1995706e-03, 2.2213342e-03, 2.2433306e-03, 2.2655629e-03, 2.2880345e-03, 2.3107488e-03, 2.3337090e-03, 2.3569181e-03, 2.3803792e-03, 2.4040957e-03, 2.4280719e-03, 2.4523120e-03, 2.4768202e-03, 2.5016002e-03, 2.5266553e-03, 2.5519890e-03, 2.5776057e-03, 2.6035104e-03, 2.6297084e-03, 2.6562048e-03, 2.6830043e-03, 2.7101117e-03, 2.7375315e-03, 2.7652689e-03, 2.7933286e-03, 2.8217154e-03, 2.8504339e-03, 2.8794884e-03, 2.9088835e-03, 2.9386241e-03, 2.9687145e-03, 2.9991587e-03, 3.0299600e-03, 3.0611217e-03, 3.0926482e-03, 3.1245451e-03, 3.1568191e-03, 3.1894768e-03, 3.2225242e-03, 3.2559664e-03, 3.2898091e-03, 3.3240583e-03, 3.3587214e-03, 3.3938067e-03, 3.4293224e-03, 3.4652767e-03, 3.5016779e-03, 3.5385345e-03, 3.5758553e-03, 3.6136495e-03, 3.6519258e-03, 3.6906922e-03, 3.7299571e-03, 3.7697293e-03, 3.8100182e-03, 3.8508329e-03, 3.8921811e-03, 3.9340686e-03, 3.9765012e-03, 4.0194858e-03, 4.0630320e-03, 4.1071514e-03, 4.1518570e-03, 4.1971608e-03, 4.2430745e-03, 4.2896089e-03, 4.3367763e-03, 4.3845912e-03, 4.4330695e-03, 4.4822277e-03, 4.5320816e-03, 4.5826467e-03, 4.6339384e-03, 4.6859719e-03, 4.7387615e-03, 4.7923194e-03, 4.8466568e-03, 4.9017870e-03, 4.9577270e-03, 5.0144984e-03, 5.0721257e-03, 5.1306336e-03, 5.1900445e-03, 5.2503797e-03, 5.3116615e-03, 5.3739165e-03, 5.4371761e-03, 5.5014739e-03, 5.5668411e-03, 5.6333041e-03, 5.7008873e-03, 5.7696170e-03, 5.8395247e-03, 5.9106461e-03, 5.9830203e-03, 6.0566905e-03, 6.1317050e-03, 6.2081180e-03, 6.2859865e-03, 6.3653662e-03, 6.4463087e-03, 6.5288625e-03, 6.6130786e-03, 6.6990192e-03, 6.7867660e-03, 6.8764191e-03, 6.9680843e-03, 7.0618584e-03, 7.1578291e-03, 7.2560919e-03, 7.3567714e-03, 7.4600284e-03, 7.5660466e-03, 7.6750148e-03, 7.7871295e-03, 7.9026146e-03, 8.0217348e-03, 8.1447950e-03, 8.2721526e-03, 8.4042437e-03, 8.5415944e-03, 8.6848273e-03, 8.8346705e-03, 8.9919655e-03, 9.1576893e-03, 9.3330448e-03, 9.5195487e-03, 9.7194892e-03, 9.9376761e-03, 1.0173245e-02, 1.0408813e-02, 1.0627000e-02, 1.0826941e-02, 1.1013444e-02, 1.1188800e-02, 1.1354524e-02, 1.1511819e-02, 1.1661662e-02, 1.1804895e-02, 1.1942245e-02, 1.2074337e-02, 1.2201694e-02, 1.2324754e-02, 1.2443875e-02, 1.2559360e-02, 1.2671474e-02, 1.2780443e-02, 1.2886461e-02, 1.2989718e-02, 1.3090397e-02, 1.3188660e-02, 1.3284631e-02, 1.3378405e-02, 1.3470070e-02, 1.3559723e-02, 1.3647470e-02, 1.3733411e-02, 1.3817627e-02, 1.3900180e-02, 1.3981123e-02, 1.4060503e-02, 1.4138371e-02, 1.4214784e-02, 1.4289799e-02, 1.4363469e-02, 1.4435843e-02, 1.4506964e-02, 1.4576872e-02, 1.4645602e-02, 1.4713185e-02, 1.4779648e-02, 1.4845015e-02, 1.4909313e-02, 1.4972573e-02, 1.5034828e-02, 1.5096109e-02, 1.5156445e-02, 1.5215856e-02, 1.5274363e-02, 1.5331991e-02, 1.5388762e-02, 1.5444702e-02, 1.5499832e-02, 1.5554170e-02, 1.5607728e-02, 1.5660517e-02, 1.5712551e-02, 1.5763842e-02, 1.5814408e-02, 1.5864261e-02, 1.5913420e-02, 1.5961898e-02, 1.6009713e-02, 1.6056880e-02, 1.6103415e-02, 1.6149328e-02, 1.6194632e-02, 1.6239338e-02, 1.6283457e-02, 1.6327003e-02, 1.6369988e-02, 1.6412421e-02, 1.6454308e-02, 1.6495656e-02, 1.6536471e-02, 1.6576760e-02, 1.6616532e-02, 1.6655797e-02, 1.6694563e-02, 1.6732840e-02, 1.6770634e-02, 1.6807955e-02, 1.6844811e-02, 1.6881212e-02, 1.6917167e-02, 1.6952683e-02, 1.6987768e-02, 1.7022431e-02, 1.7056680e-02, 1.7090523e-02, 1.7123965e-02, 1.7157012e-02, 1.7189670e-02, 1.7221944e-02, 1.7253841e-02, 1.7285367e-02, 1.7316529e-02, 1.7347330e-02, 1.7377775e-02, 1.7407865e-02, 1.7437606e-02, 1.7467001e-02, 1.7496055e-02, 1.7524774e-02, 1.7553161e-02, 1.7581220e-02, 1.7608958e-02, 1.7636377e-02, 1.7663485e-02, 1.7690284e-02, 1.7716781e-02, 1.7742979e-02, 1.7768883e-02, 1.7794500e-02, 1.7819834e-02, 1.7844889e-02, 1.7869669e-02, 1.7894177e-02, 1.7918417e-02, 1.7942393e-02, 1.7966110e-02, 1.7989571e-02, 1.8012780e-02, 1.8035740e-02, 1.8058455e-02, 1.8080926e-02, 1.8103159e-02, 1.8125155e-02, 1.8146919e-02, 1.8168452e-02, 1.8189758e-02, 1.8210839e-02, 1.8231698e-02, 1.8252336e-02, 1.8272756e-02, 1.8292960e-02, 1.8312949e-02, 1.8332726e-02, 1.8352295e-02, 1.8371656e-02, 1.8390814e-02, 1.8409771e-02, 1.8428528e-02, 1.8447087e-02, 1.8465453e-02, 1.8483626e-02, 1.8501611e-02, 1.8519409e-02, 1.8537023e-02, 1.8554455e-02, 1.8571708e-02, 1.8588783e-02, 1.8605683e-02, 1.8622411e-02, 1.8638969e-02, 1.8655357e-02, 1.8671579e-02, 1.8687637e-02, 1.8703532e-02, 1.8719267e-02, 1.8734842e-02, 1.8750260e-02, 1.8765522e-02, 1.8780630e-02, 1.8795585e-02, 1.8810391e-02, 1.8825048e-02, 1.8839557e-02, 1.8853921e-02, 1.8868140e-02, 1.8882217e-02, 1.8896154e-02, 1.8909951e-02, 1.8923611e-02, 1.8937134e-02, 1.8950522e-02, 1.8963776e-02, 1.8976898e-02, 1.8989889e-02, 1.9002750e-02, 1.9015481e-02, 1.9028085e-02, 1.9040562e-02, 1.9052915e-02, 1.9065143e-02, 1.9077250e-02, 1.9089235e-02, 1.9101101e-02, 1.9112849e-02, 1.9124480e-02, 1.9135997e-02, 1.9147400e-02, 1.9158691e-02, 1.9169871e-02, 1.9180942e-02, 1.9191906e-02, 1.9202763e-02, 1.9213516e-02, 1.9224165e-02, 1.9234712e-02, 1.9245158e-02, 1.9255504e-02, 1.9265753e-02, 1.9275905e-02, 1.9285961e-02, 1.9295922e-02, 1.9305790e-02, 1.9315566e-02, 1.9325250e-02, 1.9334844e-02, 1.9344349e-02, 1.9353765e-02, 1.9363094e-02, 1.9372335e-02, 1.9381490e-02, 1.9390561e-02, 1.9399546e-02, 1.9408448e-02, 1.9417267e-02, 1.9426003e-02, 1.9434658e-02, 1.9443232e-02, 1.9451725e-02, 1.9460139e-02, 1.9468473e-02, 1.9476729e-02, 1.9484907e-02, 1.9493009e-02, 1.9501033e-02, 1.9508982e-02, 1.9516856e-02, 1.9524655e-02, 1.9532380e-02, 1.9540032e-02, 1.9547611e-02, 1.9555119e-02, 1.9562554e-02, 1.9569919e-02, 1.9577213e-02, 1.9584437e-02, 1.9591591e-02, 1.9598677e-02, 1.9605694e-02, 1.9612644e-02, 1.9619527e-02, 1.9626343e-02, 1.9633093e-02, 1.9639779e-02, 1.9646400e-02, 1.9652958e-02, 1.9659453e-02, 1.9665886e-02, 1.9672257e-02, 1.9678569e-02, 1.9684821e-02, 1.9691014e-02, 1.9697148e-02, 1.9703226e-02, 1.9709246e-02, 1.9715211e-02, 1.9721120e-02, 1.9726976e-02, 1.9732777e-02, 1.9738525e-02, 1.9744220e-02, 1.9749864e-02, 1.9755457e-02, 1.9761000e-02, 1.9766492e-02, 1.9771935e-02, 1.9777330e-02, 1.9782676e-02, 1.9787974e-02, 1.9793226e-02, 1.9798430e-02, 1.9803589e-02, 1.9808701e-02, 1.9813768e-02, 1.9818791e-02, 1.9823768e-02, 1.9828702e-02, 1.9833592e-02, 1.9838438e-02, 1.9843241e-02, 1.9848001e-02, 1.9852718e-02, 1.9857393e-02, 1.9862026e-02, 1.9866618e-02, 1.9871167e-02, 1.9875676e-02, 1.9880144e-02, 1.9884571e-02, 1.9888958e-02, 1.9893305e-02, 1.9897612e-02, 1.9901879e-02, 1.9906108e-02, 1.9910298e-02, 1.9914450e-02, 1.9918563e-02, 1.9922638e-02, 1.9926676e-02, 1.9930677e-02, 1.9934641e-02, 1.9938569e-02, 1.9942460e-02, 1.9946316e-02, 1.9950136e-02, 1.9953922e-02, 1.9957673e-02, 1.9961391e-02, 1.9965074e-02, 1.9968724e-02, 1.9972341e-02, 1.9975925e-02, 1.9979477e-02, 1.9982997e-02, 1.9986485e-02, 1.9989941e-02, 1.9993367e-02, 1.9996761e-02, 2.0000125e-02, 2.0003459e-02, 2.0006762e-02, 2.0010036e-02, 2.0013281e-02, 2.0016496e-02, 2.0019682e-02, 2.0022840e-02, 2.0025969e-02, 2.0029070e-02, 2.0032144e-02, 2.0035190e-02, 2.0038208e-02, 2.0041200e-02, 2.0044165e-02, 2.0047103e-02, 2.0050015e-02, 2.0052901e-02, 2.0055762e-02, 2.0058596e-02, 2.0061406e-02, 2.0064190e-02, 2.0066949e-02, 2.0069683e-02, 2.0072393e-02, 2.0075078e-02, 2.0077740e-02, 2.0080377e-02, 2.0082990e-02, 2.0085579e-02, 2.0088145e-02, 2.0090687e-02, 2.0093207e-02, 2.0095703e-02, 2.0098176e-02, 2.0100627e-02, 2.0103055e-02, 2.0105461e-02, 2.0107845e-02, 2.0110208e-02, 2.0112548e-02, 2.0114867e-02, 2.0117164e-02, 2.0119440e-02, 2.0121695e-02, 2.0123930e-02, 2.0126143e-02, 2.0128337e-02, 2.0130510e-02, 2.0132664e-02, 2.0134797e-02, 2.0136912e-02, 2.0139007e-02, 2.0141083e-02, 2.0143140e-02, 2.0145178e-02, 2.0147198e-02, 2.0149200e-02, 2.0151184e-02, 2.0153150e-02, 2.0155099e-02, 2.0157030e-02, 2.0158944e-02, 2.0160842e-02, 2.0162722e-02, 2.0164586e-02, 2.0166434e-02, 2.0168266e-02, 2.0170082e-02, 2.0171882e-02, 2.0173667e-02, 2.0175436e-02, 2.0177191e-02, 2.0178930e-02, 2.0180655e-02, 2.0182365e-02, 2.0184061e-02, 2.0185742e-02, 2.0187410e-02, 2.0189063e-02, 2.0190703e-02, 2.0192329e-02, 2.0193941e-02, 2.0195540e-02, 2.0197126e-02, 2.0198698e-02, 2.0200257e-02, 2.0201803e-02, 2.0203335e-02, 2.0204855e-02, 2.0206363e-02, 2.0207857e-02, 2.0209339e-02, 2.0210808e-02, 2.0212265e-02, 2.0213709e-02, 2.0215141e-02, 2.0216561e-02, 2.0217968e-02, 2.0219364e-02, 2.0220747e-02, 2.0222118e-02, 2.0223476e-02, 2.0224823e-02, 2.0226158e-02, 2.0227480e-02, 2.0228791e-02, 2.0230090e-02, 2.0231377e-02, 2.0232652e-02, 2.0233915e-02, 2.0235167e-02, 2.0236407e-02, 2.0237635e-02, 2.0238852e-02, 2.0240057e-02, 2.0241251e-02, 2.0242434e-02, 2.0243605e-02, 2.0244765e-02, 2.0245914e-02, 2.0247053e-02, 2.0248180e-02, 2.0249297e-02, 2.0250404e-02, 2.0251499e-02, 2.0252585e-02, 2.0253661e-02, 2.0254726e-02, 2.0255782e-02, 2.0256827e-02, 2.0257864e-02, 2.0258890e-02, 2.0259907e-02, 2.0260915e-02, 2.0261914e-02, 2.0262904e-02, 2.0263884e-02, 2.0264856e-02, 2.0265819e-02, 2.0266774e-02, 2.0267720e-02, 2.0268657e-02, 2.0269586e-02, 2.0270507e-02, 2.0271420e-02, 2.0272324e-02, 2.0273220e-02, 2.0274109e-02, 2.0274989e-02, 2.0275861e-02, 2.0276726e-02, 2.0277583e-02, 2.0278432e-02, 2.0279274e-02, 2.0280108e-02, 2.0280934e-02, 2.0281753e-02, 2.0282565e-02, 2.0283369e-02, 2.0284166e-02, 2.0284955e-02, 2.0285737e-02, 2.0286512e-02, 2.0287280e-02, 2.0288041e-02, 2.0288794e-02, 2.0289541e-02, 2.0290280e-02, 2.0291013e-02, 2.0291738e-02, 2.0292457e-02, 2.0293170e-02, 2.0293875e-02, 2.0294574e-02, 2.0295267e-02, 2.0295953e-02, 2.0296633e-02, 2.0297306e-02, 2.0297973e-02, 2.0298635e-02, 2.0299290e-02, 2.0299939e-02, 2.0300582e-02, 2.0301220e-02, 2.0301851e-02, 2.0302477e-02, 2.0303098e-02, 2.0303713e-02, 2.0304323e-02, 2.0304928e-02, 2.0305527e-02, 2.0306121e-02, 2.0306710e-02, 2.0307294e-02, 2.0307874e-02, 2.0308448e-02, 2.0309018e-02, 2.0309583e-02, 2.0310144e-02, 2.0310700e-02, 2.0311252e-02, 2.0311799e-02, 2.0312343e-02, 2.0312882e-02, 2.0313416e-02, 2.0313947e-02, 2.0314473e-02, 2.0314996e-02, 2.0315515e-02, 2.0316029e-02, 2.0316540e-02, 2.0317047e-02, 2.0317550e-02, 2.0318049e-02, 2.0318544e-02, 2.0319036e-02, 2.0319523e-02, 2.0320007e-02, 2.0320487e-02, 2.0320964e-02, 2.0321437e-02, 2.0321905e-02, 2.0322371e-02, 2.0322832e-02, 2.0323290e-02, 2.0323744e-02, 2.0324194e-02, 2.0324641e-02, 2.0325083e-02, 2.0325523e-02, 2.0325958e-02, 2.0326390e-02, 2.0326818e-02, 2.0327243e-02, 2.0327663e-02, 2.0328081e-02, 2.0328495e-02, 2.0328905e-02, 2.0329311e-02, 2.0329714e-02, 2.0330114e-02, 2.0330510e-02, 2.0330903e-02, 2.0331292e-02, 2.0331678e-02, 2.0332060e-02, 2.0332439e-02, 2.0332814e-02, 2.0333186e-02, 2.0333555e-02, 2.0333920e-02, 2.0334282e-02, 2.0334641e-02, 2.0334996e-02, 2.0335348e-02, 2.0335697e-02, 2.0336042e-02, 2.0336385e-02, 2.0336724e-02, 2.0337060e-02, 2.0337393e-02, 2.0337723e-02, 2.0338050e-02, 2.0338373e-02, 2.0338694e-02, 2.0339012e-02, 2.0339326e-02, 2.0339638e-02, 2.0339947e-02, 2.0340252e-02, 2.0340555e-02, 2.0340855e-02, 2.0341151e-02, 2.0341445e-02, 2.0341736e-02, 2.0342024e-02, 2.0342310e-02, 2.0342592e-02, 2.0342872e-02, 2.0343149e-02, 2.0343422e-02, 2.0343693e-02, 2.0343962e-02, 2.0344227e-02, 2.0344490e-02, 2.0344750e-02, 2.0345007e-02, 2.0345261e-02, 2.0345512e-02, 2.0345761e-02, 2.0346006e-02, 2.0346249e-02},
- continuous = true,
- nFuture=700,
- nPast=700);
-
-end ZeroPhaseInterpolator;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/ZeroPhaseInterpolator/package.order b/Noise 1.0 Beta.1/Examples/RailIrregularities/ZeroPhaseInterpolator/package.order
deleted file mode 100644
index e69de29b..00000000
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/package.mo b/Noise 1.0 Beta.1/Examples/RailIrregularities/package.mo
deleted file mode 100644
index 33479b2c..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/package.mo
+++ /dev/null
@@ -1,4 +0,0 @@
-within Noise.Examples;
-package RailIrregularities "A package of examples demonstrating the shaping of rail irregularities"
- extends Modelica.Icons.ExamplesPackage;
-end RailIrregularities;
diff --git a/Noise 1.0 Beta.1/Examples/RailIrregularities/package.order b/Noise 1.0 Beta.1/Examples/RailIrregularities/package.order
deleted file mode 100644
index 6217fc4e..00000000
--- a/Noise 1.0 Beta.1/Examples/RailIrregularities/package.order
+++ /dev/null
@@ -1,5 +0,0 @@
-TrainOnTrack
-Comparisons
-MinimumPhaseInterpolator
-ZeroPhaseInterpolator
-Parts
diff --git a/Noise 1.0 Beta.1/Examples/SignalBasedNoise.mo b/Noise 1.0 Beta.1/Examples/SignalBasedNoise.mo
deleted file mode 100644
index ddf5739f..00000000
--- a/Noise 1.0 Beta.1/Examples/SignalBasedNoise.mo
+++ /dev/null
@@ -1,69 +0,0 @@
-within Noise.Examples;
-model SignalBasedNoise "Demonstrates the a simple case of signal based noise"
- extends Modelica.Icons.Example;
- parameter Modelica.SIunits.Radius r = 1 "Radius of circle";
- constant Real pi = Modelica.Constants.pi "Constant pi";
- inner Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed
- annotation (Placement(transformation(extent={{-20,40},{0,60}})));
- Noise.Sources.SignalBasedNoise signalBasedNoise(
- useTime=false,
- y_min=-0.05,
- y_max=0.05,
- samplePeriod=0.5)
- annotation (Placement(transformation(extent={{-20,0},{0,20}})));
- Modelica.Blocks.Sources.RealExpression pathParameter(y=r*mod(2*pi*time, 2*pi))
- annotation (Placement(transformation(extent={{-72,0},{-40,20}})));
-equation
- connect(pathParameter.y, signalBasedNoise.u) annotation (Line(
- points={{-38.4,10},{-22,10}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (experiment(StopTime=4), Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics),
- Documentation(info="
-
-This example demonstrates a simple use of the signal based noise block:
-
-
-
-- The input to block signalBasedNoise is the path parameter of a circle: The path parameter s
- starts at s=0 and continuously increases until it arrives at s=2*pi*r at the same point again
- (default: r=1).
- The simulation scenario is defined so that the path parameter increases with time until it reaches
- s=2*pi*r at every second and then the path parameter is reset to s=0.
-- The signalBasedNoise block defines a noise band of -0.05 .. 0.05. This could be interpreted as
- the height of a rough circle surface. A sample period of 0.5 in the input (so in the path parameter)
- is used. This means that along the circle 2*pi*r / 0.5 + 1 random values are drawn.
-
-
-
-The result of a simulation is show in the next diagram. It can be clearly seen that the
-noise repeats after every second (when the path parameter is reset to s=0):
-
-
-
-
-
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end SignalBasedNoise;
diff --git a/Noise 1.0 Beta.1/Examples/SignalInterpolation.mo b/Noise 1.0 Beta.1/Examples/SignalInterpolation.mo
deleted file mode 100644
index a82139dd..00000000
--- a/Noise 1.0 Beta.1/Examples/SignalInterpolation.mo
+++ /dev/null
@@ -1,94 +0,0 @@
-within Noise.Examples;
-model SignalInterpolation
- "Demonstrates signal-based noise with different interpolations"
- import Modelica_Noise;
- extends Modelica.Icons.Example;
- parameter Real startTime = 0.5;
- parameter Real y_off = -1.0;
- constant Real pi = Modelica.Constants.pi "Constant pi";
-
- inner Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed(useAutomaticSeed=false, enableNoise=true)
- annotation (Placement(transformation(extent={{60,60},{80,80}})));
-
- Noise.Sources.SignalBasedNoise constantNoise(
- redeclare package interpolation =
- Interpolators.Constant,
- y_min=-1,
- y_max=+1,
- useAutomaticLocalSeed=false,
- samplePeriod=0.1,
- useTime=false)
- annotation (Placement(transformation(extent={{-60,70},{-40,90}})));
- Modelica.Blocks.Sources.RealExpression signal(y=sin(pi*time))
- annotation (Placement(transformation(extent={{-100,70},{-80,90}})));
- Noise.Sources.SignalBasedNoise linearNoise(
- useTime=false,
- y_min=-1,
- y_max=+1,
- redeclare package interpolation =
- Interpolators.Linear,
- useAutomaticLocalSeed=false,
- samplePeriod=0.1)
- annotation (Placement(transformation(extent={{-60,20},{-40,40}})));
- Noise.Sources.SignalBasedNoise smoothNoise(
- useTime=false,
- y_min=-1,
- y_max=+1,
- useAutomaticLocalSeed=false,
- redeclare package interpolation =
- Interpolators.SmoothIdealLowPass,
- samplePeriod=0.1)
- annotation (Placement(transformation(extent={{-60,-30},{-40,-10}})));
-equation
- connect(signal.y, constantNoise.u) annotation (Line(
- points={{-79,80},{-62,80}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(linearNoise.u, signal.y) annotation (Line(
- points={{-62,30},{-72,30},{-72,80},{-79,80}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(smoothNoise.u, signal.y) annotation (Line(
- points={{-62,-20},{-72,-20},{-72,80},{-79,80}},
- color={0,0,127},
- smooth=Smooth.None));
- annotation (experiment(StopTime=2), Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics),
- Documentation(info="
-
-This example demonstrates the
-Blocks.Noise.SignalBasedNoise
-block by using various interpolation methods. The input to the blocks is a sine and
-the argument of the sine, as well as the sample periods of the blocks are selected in such a way
-that a sample instant hits the sine for every full period.
-Therefore, the noise is repeated after every full period of the sine.
-The result of a simulation is show in the next diagram, plotting the (noise) output of the
-blocks over the sine output:
-
-
-
-
-
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end SignalInterpolation;
diff --git a/Noise 1.0 Beta.1/Examples/Utilities/RailIrregularities/package.mo b/Noise 1.0 Beta.1/Examples/Utilities/RailIrregularities/package.mo
deleted file mode 100644
index e3b9934a..00000000
--- a/Noise 1.0 Beta.1/Examples/Utilities/RailIrregularities/package.mo
+++ /dev/null
@@ -1,52 +0,0 @@
-within Noise.Examples.Utilities;
-package RailIrregularities "Provides a filter function for rail irregularities"
-
- // // Zero-phase, ds = 2.0m
- // extends Interpolators.StepResponse(
- // T = { -6.8000000e+01, -6.6000000e+01, -6.4000000e+01, -6.2000000e+01, -6.0000000e+01, -5.8000000e+01, -5.6000000e+01, -5.4000000e+01, -5.2000000e+01, -5.0000000e+01, -4.8000000e+01, -4.6000000e+01, -4.4000000e+01, -4.2000000e+01, -4.0000000e+01, -3.8000000e+01, -3.6000000e+01, -3.4000000e+01, -3.2000000e+01, -3.0000000e+01, -2.8000000e+01, -2.6000000e+01, -2.4000000e+01, -2.2000000e+01, -2.0000000e+01, -1.8000000e+01, -1.6000000e+01, -1.4000000e+01, -1.2000000e+01, -1.0000000e+01, -8.0000000e+00, -6.0000000e+00, -4.0000000e+00, -2.0000000e+00, 0.0000000e+00, 2.0000000e+00, 4.0000000e+00, 6.0000000e+00, 8.0000000e+00, 1.0000000e+01, 1.2000000e+01, 1.4000000e+01, 1.6000000e+01, 1.8000000e+01, 2.0000000e+01, 2.2000000e+01, 2.4000000e+01, 2.6000000e+01, 2.8000000e+01, 3.0000000e+01, 3.2000000e+01, 3.4000000e+01, 3.6000000e+01, 3.8000000e+01, 4.0000000e+01, 4.2000000e+01, 4.4000000e+01, 4.6000000e+01, 4.8000000e+01, 5.0000000e+01, 5.2000000e+01, 5.4000000e+01, 5.6000000e+01, 5.8000000e+01, 6.0000000e+01, 6.2000000e+01, 6.4000000e+01, 6.6000000e+01},
- // step = { 0.0000000e+00, 3.5944165e-08, 8.1188627e-08, 1.3857170e-07, 2.1030568e-07, 2.9744473e-07, 4.0104052e-07, 5.2247183e-07, 6.6401986e-07, 8.3071971e-07, 1.0299164e-06, 1.2691607e-06, 1.5566169e-06, 1.9006882e-06, 2.3089517e-06, 2.7922825e-06, 3.3685752e-06, 4.0596154e-06, 4.8893693e-06, 5.8862117e-06, 7.0821677e-06, 8.5150788e-06, 1.0236787e-05, 1.2310851e-05, 1.4814242e-05, 1.7854722e-05, 2.1579348e-05, 2.6169160e-05, 3.1851772e-05, 3.8915706e-05, 4.7761968e-05, 5.8943018e-05, 7.3800943e-05, 9.7683565e-05, 1.3328657e-04, 1.6888958e-04, 1.9277220e-04, 2.0763012e-04, 2.1881117e-04, 2.2765744e-04, 2.3472137e-04, 2.4040398e-04, 2.4499379e-04, 2.4871842e-04, 2.5175890e-04, 2.5426229e-04, 2.5633635e-04, 2.5805806e-04, 2.5949097e-04, 2.6068693e-04, 2.6168377e-04, 2.6251353e-04, 2.6320457e-04, 2.6378086e-04, 2.6426419e-04, 2.6467245e-04, 2.6501652e-04, 2.6530398e-04, 2.6554322e-04, 2.6574242e-04, 2.6590912e-04, 2.6605067e-04, 2.6617210e-04, 2.6627570e-04, 2.6636284e-04, 2.6643457e-04, 2.6649195e-04, 2.6653720e-04},
- // continuous = true,
- // nFuture=500,
- // nPast=500);
-
- // // Zero-phase, ds = 0.5m
- // extends Interpolators.StepResponse(
- // T = { -5.9500000e+01, -5.9000000e+01, -5.8500000e+01, -5.8000000e+01, -5.7500000e+01, -5.7000000e+01, -5.6500000e+01, -5.6000000e+01, -5.5500000e+01, -5.5000000e+01, -5.4500000e+01, -5.4000000e+01, -5.3500000e+01, -5.3000000e+01, -5.2500000e+01, -5.2000000e+01, -5.1500000e+01, -5.1000000e+01, -5.0500000e+01, -5.0000000e+01, -4.9500000e+01, -4.9000000e+01, -4.8500000e+01, -4.8000000e+01, -4.7500000e+01, -4.7000000e+01, -4.6500000e+01, -4.6000000e+01, -4.5500000e+01, -4.5000000e+01, -4.4500000e+01, -4.4000000e+01, -4.3500000e+01, -4.3000000e+01, -4.2500000e+01, -4.2000000e+01, -4.1500000e+01, -4.1000000e+01, -4.0500000e+01, -4.0000000e+01, -3.9500000e+01, -3.9000000e+01, -3.8500000e+01, -3.8000000e+01, -3.7500000e+01, -3.7000000e+01, -3.6500000e+01, -3.6000000e+01, -3.5500000e+01, -3.5000000e+01, -3.4500000e+01, -3.4000000e+01, -3.3500000e+01, -3.3000000e+01, -3.2500000e+01, -3.2000000e+01, -3.1500000e+01, -3.1000000e+01, -3.0500000e+01, -3.0000000e+01, -2.9500000e+01, -2.9000000e+01, -2.8500000e+01, -2.8000000e+01, -2.7500000e+01, -2.7000000e+01, -2.6500000e+01, -2.6000000e+01, -2.5500000e+01, -2.5000000e+01, -2.4500000e+01, -2.4000000e+01, -2.3500000e+01, -2.3000000e+01, -2.2500000e+01, -2.2000000e+01, -2.1500000e+01, -2.1000000e+01, -2.0500000e+01, -2.0000000e+01, -1.9500000e+01, -1.9000000e+01, -1.8500000e+01, -1.8000000e+01, -1.7500000e+01, -1.7000000e+01, -1.6500000e+01, -1.6000000e+01, -1.5500000e+01, -1.5000000e+01, -1.4500000e+01, -1.4000000e+01, -1.3500000e+01, -1.3000000e+01, -1.2500000e+01, -1.2000000e+01, -1.1500000e+01, -1.1000000e+01, -1.0500000e+01, -1.0000000e+01, -9.5000000e+00, -9.0000000e+00, -8.5000000e+00, -8.0000000e+00, -7.5000000e+00, -7.0000000e+00, -6.5000000e+00, -6.0000000e+00, -5.5000000e+00, -5.0000000e+00, -4.5000000e+00, -4.0000000e+00, -3.5000000e+00, -3.0000000e+00, -2.5000000e+00, -2.0000000e+00, -1.5000000e+00, -1.0000000e+00, -5.0000000e-01, 0.0000000e+00, 5.0000000e-01, 1.0000000e+00, 1.5000000e+00, 2.0000000e+00, 2.5000000e+00, 3.0000000e+00, 3.5000000e+00, 4.0000000e+00, 4.5000000e+00, 5.0000000e+00, 5.5000000e+00, 6.0000000e+00, 6.5000000e+00, 7.0000000e+00, 7.5000000e+00, 8.0000000e+00, 8.5000000e+00, 9.0000000e+00, 9.5000000e+00, 1.0000000e+01, 1.0500000e+01, 1.1000000e+01, 1.1500000e+01, 1.2000000e+01, 1.2500000e+01, 1.3000000e+01, 1.3500000e+01, 1.4000000e+01, 1.4500000e+01, 1.5000000e+01, 1.5500000e+01, 1.6000000e+01, 1.6500000e+01, 1.7000000e+01, 1.7500000e+01, 1.8000000e+01, 1.8500000e+01, 1.9000000e+01, 1.9500000e+01, 2.0000000e+01, 2.0500000e+01, 2.1000000e+01, 2.1500000e+01, 2.2000000e+01, 2.2500000e+01, 2.3000000e+01, 2.3500000e+01, 2.4000000e+01, 2.4500000e+01, 2.5000000e+01, 2.5500000e+01, 2.6000000e+01, 2.6500000e+01, 2.7000000e+01, 2.7500000e+01, 2.8000000e+01, 2.8500000e+01, 2.9000000e+01, 2.9500000e+01, 3.0000000e+01, 3.0500000e+01, 3.1000000e+01, 3.1500000e+01, 3.2000000e+01, 3.2500000e+01, 3.3000000e+01, 3.3500000e+01, 3.4000000e+01, 3.4500000e+01, 3.5000000e+01, 3.5500000e+01, 3.6000000e+01, 3.6500000e+01, 3.7000000e+01, 3.7500000e+01, 3.8000000e+01, 3.8500000e+01, 3.9000000e+01, 3.9500000e+01, 4.0000000e+01, 4.0500000e+01, 4.1000000e+01, 4.1500000e+01, 4.2000000e+01, 4.2500000e+01, 4.3000000e+01, 4.3500000e+01, 4.4000000e+01, 4.4500000e+01, 4.5000000e+01, 4.5500000e+01, 4.6000000e+01, 4.6500000e+01, 4.7000000e+01, 4.7500000e+01, 4.8000000e+01, 4.8500000e+01, 4.9000000e+01, 4.9500000e+01, 5.0000000e+01, 5.0500000e+01, 5.1000000e+01, 5.1500000e+01, 5.2000000e+01, 5.2500000e+01, 5.3000000e+01, 5.3500000e+01, 5.4000000e+01, 5.4500000e+01, 5.5000000e+01, 5.5500000e+01, 5.6000000e+01, 5.6500000e+01, 5.7000000e+01, 5.7500000e+01, 5.8000000e+01, 5.8500000e+01, 5.9000000e+01},
- // step = { 0.0000000e+00, 1.2789295e-08, 2.6717758e-08, 4.1835140e-08, 5.8191254e-08, 7.5832279e-08, 9.4796337e-08, 1.1511418e-07, 1.3681302e-07, 1.5991847e-07, 1.8445109e-07, 2.1042467e-07, 2.3785683e-07, 2.6678496e-07, 2.9727254e-07, 3.2940848e-07, 3.6330452e-07, 3.9908713e-07, 4.3688669e-07, 4.7683093e-07, 5.1904109e-07, 5.6362745e-07, 6.1068231e-07, 6.6027621e-07, 7.1246961e-07, 7.6733287e-07, 8.2495468e-07, 8.8544402e-07, 9.4893851e-07, 1.0156086e-06, 1.0856454e-06, 1.1592362e-06, 1.2365379e-06, 1.3176625e-06, 1.4026806e-06, 1.4916383e-06, 1.5845872e-06, 1.6816160e-06, 1.7828556e-06, 1.8884698e-06, 1.9986617e-06, 2.1136861e-06, 2.2338464e-06, 2.3594757e-06, 2.4909183e-06, 2.6285223e-06, 2.7726373e-06, 2.9235993e-06, 3.0817167e-06, 3.2472799e-06, 3.4205765e-06, 3.6019038e-06, 3.7915988e-06, 3.9900595e-06, 4.1977313e-06, 4.4150778e-06, 4.6425767e-06, 4.8807448e-06, 5.1301606e-06, 5.3914290e-06, 5.6651191e-06, 5.9517498e-06, 6.2518141e-06, 6.5658054e-06, 6.8942692e-06, 7.2378713e-06, 7.5974338e-06, 7.9739379e-06, 8.3685055e-06, 8.7823613e-06, 9.2167666e-06, 9.6729071e-06, 1.0151808e-05, 1.0654401e-05, 1.1181655e-05, 1.1734606e-05, 1.2314343e-05, 1.2922067e-05, 1.3559189e-05, 1.4227424e-05, 1.4928808e-05, 1.5665608e-05, 1.6440198e-05, 1.7254906e-05, 1.8111897e-05, 1.9013327e-05, 1.9961610e-05, 2.0959441e-05, 2.2009694e-05, 2.3115502e-05, 2.4280411e-05, 2.5508340e-05, 2.6803322e-05, 2.8169288e-05, 2.9610359e-05, 3.1131406e-05, 3.2738190e-05, 3.4437325e-05, 3.6236202e-05, 3.8142384e-05, 4.0163139e-05, 4.2306363e-05, 4.4582073e-05, 4.7002879e-05, 4.9582716e-05, 5.2335141e-05, 5.5274350e-05, 5.8418424e-05, 6.1789555e-05, 6.5413061e-05, 6.9320688e-05, 7.3553783e-05, 7.8162204e-05, 8.3207012e-05, 8.8764231e-05, 9.4938865e-05, 1.0189482e-04, 1.1003314e-04, 1.2040643e-04, 1.3327499e-04, 1.4614356e-04, 1.5651685e-04, 1.6465516e-04, 1.7161112e-04, 1.7778576e-04, 1.8334297e-04, 1.8838778e-04, 1.9299620e-04, 1.9722930e-04, 2.0113692e-04, 2.0476043e-04, 2.0813156e-04, 2.1127564e-04, 2.1421485e-04, 2.1696727e-04, 2.1954711e-04, 2.2196791e-04, 2.2424362e-04, 2.2638685e-04, 2.2840760e-04, 2.3031378e-04, 2.3211266e-04, 2.3381180e-04, 2.3541858e-04, 2.3693963e-04, 2.3838070e-04, 2.3974666e-04, 2.4104165e-04, 2.4226958e-04, 2.4343448e-04, 2.4454029e-04, 2.4559055e-04, 2.4658838e-04, 2.4753666e-04, 2.4843809e-04, 2.4929508e-04, 2.5010979e-04, 2.5088438e-04, 2.5162118e-04, 2.5232256e-04, 2.5299080e-04, 2.5362792e-04, 2.5423564e-04, 2.5481538e-04, 2.5536833e-04, 2.5589559e-04, 2.5639818e-04, 2.5687708e-04, 2.5733322e-04, 2.5776762e-04, 2.5818148e-04, 2.5857605e-04, 2.5895255e-04, 2.5931211e-04, 2.5965572e-04, 2.5998418e-04, 2.6029817e-04, 2.6059824e-04, 2.6088487e-04, 2.6115856e-04, 2.6141983e-04, 2.6166924e-04, 2.6190741e-04, 2.6213491e-04, 2.6235225e-04, 2.6255993e-04, 2.6275839e-04, 2.6294808e-04, 2.6312941e-04, 2.6330271e-04, 2.6346827e-04, 2.6362639e-04, 2.6377735e-04, 2.6392146e-04, 2.6405907e-04, 2.6419051e-04, 2.6431614e-04, 2.6443630e-04, 2.6455132e-04, 2.6466152e-04, 2.6476713e-04, 2.6486837e-04, 2.6496540e-04, 2.6505835e-04, 2.6514731e-04, 2.6523232e-04, 2.6531345e-04, 2.6539075e-04, 2.6546434e-04, 2.6553438e-04, 2.6560105e-04, 2.6566454e-04, 2.6572503e-04, 2.6578265e-04, 2.6583752e-04, 2.6588971e-04, 2.6593930e-04, 2.6598636e-04, 2.6603095e-04, 2.6607316e-04, 2.6611310e-04, 2.6615090e-04, 2.6618668e-04, 2.6622058e-04, 2.6625271e-04, 2.6628320e-04, 2.6631213e-04, 2.6633956e-04, 2.6636554e-04, 2.6639007e-04, 2.6641317e-04, 2.6643487e-04, 2.6645519e-04, 2.6647415e-04, 2.6649179e-04, 2.6650815e-04, 2.6652327e-04, 2.6653720e-04},
- // continuous = true,
- // nFuture=500,
- // nPast=500);
-
- // Zero-phase, ds = 0.1m
-
- extends Interpolators.StepResponse(
- T = { -5.8100000e+01, -5.8000000e+01, -5.7900000e+01, -5.7800000e+01, -5.7700000e+01, -5.7600000e+01, -5.7500000e+01, -5.7400000e+01, -5.7300000e+01, -5.7200000e+01, -5.7100000e+01, -5.7000000e+01, -5.6900000e+01, -5.6800000e+01, -5.6700000e+01, -5.6600000e+01, -5.6500000e+01, -5.6400000e+01, -5.6300000e+01, -5.6200000e+01, -5.6100000e+01, -5.6000000e+01, -5.5900000e+01, -5.5800000e+01, -5.5700000e+01, -5.5600000e+01, -5.5500000e+01, -5.5400000e+01, -5.5300000e+01, -5.5200000e+01, -5.5100000e+01, -5.5000000e+01, -5.4900000e+01, -5.4800000e+01, -5.4700000e+01, -5.4600000e+01, -5.4500000e+01, -5.4400000e+01, -5.4300000e+01, -5.4200000e+01, -5.4100000e+01, -5.4000000e+01, -5.3900000e+01, -5.3800000e+01, -5.3700000e+01, -5.3600000e+01, -5.3500000e+01, -5.3400000e+01, -5.3300000e+01, -5.3200000e+01, -5.3100000e+01, -5.3000000e+01, -5.2900000e+01, -5.2800000e+01, -5.2700000e+01, -5.2600000e+01, -5.2500000e+01, -5.2400000e+01, -5.2300000e+01, -5.2200000e+01, -5.2100000e+01, -5.2000000e+01, -5.1900000e+01, -5.1800000e+01, -5.1700000e+01, -5.1600000e+01, -5.1500000e+01, -5.1400000e+01, -5.1300000e+01, -5.1200000e+01, -5.1100000e+01, -5.1000000e+01, -5.0900000e+01, -5.0800000e+01, -5.0700000e+01, -5.0600000e+01, -5.0500000e+01, -5.0400000e+01, -5.0300000e+01, -5.0200000e+01, -5.0100000e+01, -5.0000000e+01, -4.9900000e+01, -4.9800000e+01, -4.9700000e+01, -4.9600000e+01, -4.9500000e+01, -4.9400000e+01, -4.9300000e+01, -4.9200000e+01, -4.9100000e+01, -4.9000000e+01, -4.8900000e+01, -4.8800000e+01, -4.8700000e+01, -4.8600000e+01, -4.8500000e+01, -4.8400000e+01, -4.8300000e+01, -4.8200000e+01, -4.8100000e+01, -4.8000000e+01, -4.7900000e+01, -4.7800000e+01, -4.7700000e+01, -4.7600000e+01, -4.7500000e+01, -4.7400000e+01, -4.7300000e+01, -4.7200000e+01, -4.7100000e+01, -4.7000000e+01, -4.6900000e+01, -4.6800000e+01, -4.6700000e+01, -4.6600000e+01, -4.6500000e+01, -4.6400000e+01, -4.6300000e+01, -4.6200000e+01, -4.6100000e+01, -4.6000000e+01, -4.5900000e+01, -4.5800000e+01, -4.5700000e+01, -4.5600000e+01, -4.5500000e+01, -4.5400000e+01, -4.5300000e+01, -4.5200000e+01, -4.5100000e+01, -4.5000000e+01, -4.4900000e+01, -4.4800000e+01, -4.4700000e+01, -4.4600000e+01, -4.4500000e+01, -4.4400000e+01, -4.4300000e+01, -4.4200000e+01, -4.4100000e+01, -4.4000000e+01, -4.3900000e+01, -4.3800000e+01, -4.3700000e+01, -4.3600000e+01, -4.3500000e+01, -4.3400000e+01, -4.3300000e+01, -4.3200000e+01, -4.3100000e+01, -4.3000000e+01, -4.2900000e+01, -4.2800000e+01, -4.2700000e+01, -4.2600000e+01, -4.2500000e+01, -4.2400000e+01, -4.2300000e+01, -4.2200000e+01, -4.2100000e+01, -4.2000000e+01, -4.1900000e+01, -4.1800000e+01, -4.1700000e+01, -4.1600000e+01, -4.1500000e+01, -4.1400000e+01, -4.1300000e+01, -4.1200000e+01, -4.1100000e+01, -4.1000000e+01, -4.0900000e+01, -4.0800000e+01, -4.0700000e+01, -4.0600000e+01, -4.0500000e+01, -4.0400000e+01, -4.0300000e+01, -4.0200000e+01, -4.0100000e+01, -4.0000000e+01, -3.9900000e+01, -3.9800000e+01, -3.9700000e+01, -3.9600000e+01, -3.9500000e+01, -3.9400000e+01, -3.9300000e+01, -3.9200000e+01, -3.9100000e+01, -3.9000000e+01, -3.8900000e+01, -3.8800000e+01, -3.8700000e+01, -3.8600000e+01, -3.8500000e+01, -3.8400000e+01, -3.8300000e+01, -3.8200000e+01, -3.8100000e+01, -3.8000000e+01, -3.7900000e+01, -3.7800000e+01, -3.7700000e+01, -3.7600000e+01, -3.7500000e+01, -3.7400000e+01, -3.7300000e+01, -3.7200000e+01, -3.7100000e+01, -3.7000000e+01, -3.6900000e+01, -3.6800000e+01, -3.6700000e+01, -3.6600000e+01, -3.6500000e+01, -3.6400000e+01, -3.6300000e+01, -3.6200000e+01, -3.6100000e+01, -3.6000000e+01, -3.5900000e+01, -3.5800000e+01, -3.5700000e+01, -3.5600000e+01, -3.5500000e+01, -3.5400000e+01, -3.5300000e+01, -3.5200000e+01, -3.5100000e+01, -3.5000000e+01, -3.4900000e+01, -3.4800000e+01, -3.4700000e+01, -3.4600000e+01, -3.4500000e+01, -3.4400000e+01, -3.4300000e+01, -3.4200000e+01, -3.4100000e+01, -3.4000000e+01, -3.3900000e+01, -3.3800000e+01, -3.3700000e+01, -3.3600000e+01, -3.3500000e+01, -3.3400000e+01, -3.3300000e+01, -3.3200000e+01, -3.3100000e+01, -3.3000000e+01, -3.2900000e+01, -3.2800000e+01, -3.2700000e+01, -3.2600000e+01, -3.2500000e+01, -3.2400000e+01, -3.2300000e+01, -3.2200000e+01, -3.2100000e+01, -3.2000000e+01, -3.1900000e+01, -3.1800000e+01, -3.1700000e+01, -3.1600000e+01, -3.1500000e+01, -3.1400000e+01, -3.1300000e+01, -3.1200000e+01, -3.1100000e+01, -3.1000000e+01, -3.0900000e+01, -3.0800000e+01, -3.0700000e+01, -3.0600000e+01, -3.0500000e+01, -3.0400000e+01, -3.0300000e+01, -3.0200000e+01, -3.0100000e+01, -3.0000000e+01, -2.9900000e+01, -2.9800000e+01, -2.9700000e+01, -2.9600000e+01, -2.9500000e+01, -2.9400000e+01, -2.9300000e+01, -2.9200000e+01, -2.9100000e+01, -2.9000000e+01, -2.8900000e+01, -2.8800000e+01, -2.8700000e+01, -2.8600000e+01, -2.8500000e+01, -2.8400000e+01, -2.8300000e+01, -2.8200000e+01, -2.8100000e+01, -2.8000000e+01, -2.7900000e+01, -2.7800000e+01, -2.7700000e+01, -2.7600000e+01, -2.7500000e+01, -2.7400000e+01, -2.7300000e+01, -2.7200000e+01, -2.7100000e+01, -2.7000000e+01, -2.6900000e+01, -2.6800000e+01, -2.6700000e+01, -2.6600000e+01, -2.6500000e+01, -2.6400000e+01, -2.6300000e+01, -2.6200000e+01, -2.6100000e+01, -2.6000000e+01, -2.5900000e+01, -2.5800000e+01, -2.5700000e+01, -2.5600000e+01, -2.5500000e+01, -2.5400000e+01, -2.5300000e+01, -2.5200000e+01, -2.5100000e+01, -2.5000000e+01, -2.4900000e+01, -2.4800000e+01, -2.4700000e+01, -2.4600000e+01, -2.4500000e+01, -2.4400000e+01, -2.4300000e+01, -2.4200000e+01, -2.4100000e+01, -2.4000000e+01, -2.3900000e+01, -2.3800000e+01, -2.3700000e+01, -2.3600000e+01, -2.3500000e+01, -2.3400000e+01, -2.3300000e+01, -2.3200000e+01, -2.3100000e+01, -2.3000000e+01, -2.2900000e+01, -2.2800000e+01, -2.2700000e+01, -2.2600000e+01, -2.2500000e+01, -2.2400000e+01, -2.2300000e+01, -2.2200000e+01, -2.2100000e+01, -2.2000000e+01, -2.1900000e+01, -2.1800000e+01, -2.1700000e+01, -2.1600000e+01, -2.1500000e+01, -2.1400000e+01, -2.1300000e+01, -2.1200000e+01, -2.1100000e+01, -2.1000000e+01, -2.0900000e+01, -2.0800000e+01, -2.0700000e+01, -2.0600000e+01, -2.0500000e+01, -2.0400000e+01, -2.0300000e+01, -2.0200000e+01, -2.0100000e+01, -2.0000000e+01, -1.9900000e+01, -1.9800000e+01, -1.9700000e+01, -1.9600000e+01, -1.9500000e+01, -1.9400000e+01, -1.9300000e+01, -1.9200000e+01, -1.9100000e+01, -1.9000000e+01, -1.8900000e+01, -1.8800000e+01, -1.8700000e+01, -1.8600000e+01, -1.8500000e+01, -1.8400000e+01, -1.8300000e+01, -1.8200000e+01, -1.8100000e+01, -1.8000000e+01, -1.7900000e+01, -1.7800000e+01, -1.7700000e+01, -1.7600000e+01, -1.7500000e+01, -1.7400000e+01, -1.7300000e+01, -1.7200000e+01, -1.7100000e+01, -1.7000000e+01, -1.6900000e+01, -1.6800000e+01, -1.6700000e+01, -1.6600000e+01, -1.6500000e+01, -1.6400000e+01, -1.6300000e+01, -1.6200000e+01, -1.6100000e+01, -1.6000000e+01, -1.5900000e+01, -1.5800000e+01, -1.5700000e+01, -1.5600000e+01, -1.5500000e+01, -1.5400000e+01, -1.5300000e+01, -1.5200000e+01, -1.5100000e+01, -1.5000000e+01, -1.4900000e+01, -1.4800000e+01, -1.4700000e+01, -1.4600000e+01, -1.4500000e+01, -1.4400000e+01, -1.4300000e+01, -1.4200000e+01, -1.4100000e+01, -1.4000000e+01, -1.3900000e+01, -1.3800000e+01, -1.3700000e+01, -1.3600000e+01, -1.3500000e+01, -1.3400000e+01, -1.3300000e+01, -1.3200000e+01, -1.3100000e+01, -1.3000000e+01, -1.2900000e+01, -1.2800000e+01, -1.2700000e+01, -1.2600000e+01, -1.2500000e+01, -1.2400000e+01, -1.2300000e+01, -1.2200000e+01, -1.2100000e+01, -1.2000000e+01, -1.1900000e+01, -1.1800000e+01, -1.1700000e+01, -1.1600000e+01, -1.1500000e+01, -1.1400000e+01, -1.1300000e+01, -1.1200000e+01, -1.1100000e+01, -1.1000000e+01, -1.0900000e+01, -1.0800000e+01, -1.0700000e+01, -1.0600000e+01, -1.0500000e+01, -1.0400000e+01, -1.0300000e+01, -1.0200000e+01, -1.0100000e+01, -1.0000000e+01, -9.9000000e+00, -9.8000000e+00, -9.7000000e+00, -9.6000000e+00, -9.5000000e+00, -9.4000000e+00, -9.3000000e+00, -9.2000000e+00, -9.1000000e+00, -9.0000000e+00, -8.9000000e+00, -8.8000000e+00, -8.7000000e+00, -8.6000000e+00, -8.5000000e+00, -8.4000000e+00, -8.3000000e+00, -8.2000000e+00, -8.1000000e+00, -8.0000000e+00, -7.9000000e+00, -7.8000000e+00, -7.7000000e+00, -7.6000000e+00, -7.5000000e+00, -7.4000000e+00, -7.3000000e+00, -7.2000000e+00, -7.1000000e+00, -7.0000000e+00, -6.9000000e+00, -6.8000000e+00, -6.7000000e+00, -6.6000000e+00, -6.5000000e+00, -6.4000000e+00, -6.3000000e+00, -6.2000000e+00, -6.1000000e+00, -6.0000000e+00, -5.9000000e+00, -5.8000000e+00, -5.7000000e+00, -5.6000000e+00, -5.5000000e+00, -5.4000000e+00, -5.3000000e+00, -5.2000000e+00, -5.1000000e+00, -5.0000000e+00, -4.9000000e+00, -4.8000000e+00, -4.7000000e+00, -4.6000000e+00, -4.5000000e+00, -4.4000000e+00, -4.3000000e+00, -4.2000000e+00, -4.1000000e+00, -4.0000000e+00, -3.9000000e+00, -3.8000000e+00, -3.7000000e+00, -3.6000000e+00, -3.5000000e+00, -3.4000000e+00, -3.3000000e+00, -3.2000000e+00, -3.1000000e+00, -3.0000000e+00, -2.9000000e+00, -2.8000000e+00, -2.7000000e+00, -2.6000000e+00, -2.5000000e+00, -2.4000000e+00, -2.3000000e+00, -2.2000000e+00, -2.1000000e+00, -2.0000000e+00, -1.9000000e+00, -1.8000000e+00, -1.7000000e+00, -1.6000000e+00, -1.5000000e+00, -1.4000000e+00, -1.3000000e+00, -1.2000000e+00, -1.1000000e+00, -1.0000000e+00, -9.0000000e-01, -8.0000000e-01, -7.0000000e-01, -6.0000000e-01, -5.0000000e-01, -4.0000000e-01, -3.0000000e-01, -2.0000000e-01, -1.0000000e-01, 0.0000000e+00, 1.0000000e-01, 2.0000000e-01, 3.0000000e-01, 4.0000000e-01, 5.0000000e-01, 6.0000000e-01, 7.0000000e-01, 8.0000000e-01, 9.0000000e-01, 1.0000000e+00, 1.1000000e+00, 1.2000000e+00, 1.3000000e+00, 1.4000000e+00, 1.5000000e+00, 1.6000000e+00, 1.7000000e+00, 1.8000000e+00, 1.9000000e+00, 2.0000000e+00, 2.1000000e+00, 2.2000000e+00, 2.3000000e+00, 2.4000000e+00, 2.5000000e+00, 2.6000000e+00, 2.7000000e+00, 2.8000000e+00, 2.9000000e+00, 3.0000000e+00, 3.1000000e+00, 3.2000000e+00, 3.3000000e+00, 3.4000000e+00, 3.5000000e+00, 3.6000000e+00, 3.7000000e+00, 3.8000000e+00, 3.9000000e+00, 4.0000000e+00, 4.1000000e+00, 4.2000000e+00, 4.3000000e+00, 4.4000000e+00, 4.5000000e+00, 4.6000000e+00, 4.7000000e+00, 4.8000000e+00, 4.9000000e+00, 5.0000000e+00, 5.1000000e+00, 5.2000000e+00, 5.3000000e+00, 5.4000000e+00, 5.5000000e+00, 5.6000000e+00, 5.7000000e+00, 5.8000000e+00, 5.9000000e+00, 6.0000000e+00, 6.1000000e+00, 6.2000000e+00, 6.3000000e+00, 6.4000000e+00, 6.5000000e+00, 6.6000000e+00, 6.7000000e+00, 6.8000000e+00, 6.9000000e+00, 7.0000000e+00, 7.1000000e+00, 7.2000000e+00, 7.3000000e+00, 7.4000000e+00, 7.5000000e+00, 7.6000000e+00, 7.7000000e+00, 7.8000000e+00, 7.9000000e+00, 8.0000000e+00, 8.1000000e+00, 8.2000000e+00, 8.3000000e+00, 8.4000000e+00, 8.5000000e+00, 8.6000000e+00, 8.7000000e+00, 8.8000000e+00, 8.9000000e+00, 9.0000000e+00, 9.1000000e+00, 9.2000000e+00, 9.3000000e+00, 9.4000000e+00, 9.5000000e+00, 9.6000000e+00, 9.7000000e+00, 9.8000000e+00, 9.9000000e+00, 1.0000000e+01, 1.0100000e+01, 1.0200000e+01, 1.0300000e+01, 1.0400000e+01, 1.0500000e+01, 1.0600000e+01, 1.0700000e+01, 1.0800000e+01, 1.0900000e+01, 1.1000000e+01, 1.1100000e+01, 1.1200000e+01, 1.1300000e+01, 1.1400000e+01, 1.1500000e+01, 1.1600000e+01, 1.1700000e+01, 1.1800000e+01, 1.1900000e+01, 1.2000000e+01, 1.2100000e+01, 1.2200000e+01, 1.2300000e+01, 1.2400000e+01, 1.2500000e+01, 1.2600000e+01, 1.2700000e+01, 1.2800000e+01, 1.2900000e+01, 1.3000000e+01, 1.3100000e+01, 1.3200000e+01, 1.3300000e+01, 1.3400000e+01, 1.3500000e+01, 1.3600000e+01, 1.3700000e+01, 1.3800000e+01, 1.3900000e+01, 1.4000000e+01, 1.4100000e+01, 1.4200000e+01, 1.4300000e+01, 1.4400000e+01, 1.4500000e+01, 1.4600000e+01, 1.4700000e+01, 1.4800000e+01, 1.4900000e+01, 1.5000000e+01, 1.5100000e+01, 1.5200000e+01, 1.5300000e+01, 1.5400000e+01, 1.5500000e+01, 1.5600000e+01, 1.5700000e+01, 1.5800000e+01, 1.5900000e+01, 1.6000000e+01, 1.6100000e+01, 1.6200000e+01, 1.6300000e+01, 1.6400000e+01, 1.6500000e+01, 1.6600000e+01, 1.6700000e+01, 1.6800000e+01, 1.6900000e+01, 1.7000000e+01, 1.7100000e+01, 1.7200000e+01, 1.7300000e+01, 1.7400000e+01, 1.7500000e+01, 1.7600000e+01, 1.7700000e+01, 1.7800000e+01, 1.7900000e+01, 1.8000000e+01, 1.8100000e+01, 1.8200000e+01, 1.8300000e+01, 1.8400000e+01, 1.8500000e+01, 1.8600000e+01, 1.8700000e+01, 1.8800000e+01, 1.8900000e+01, 1.9000000e+01, 1.9100000e+01, 1.9200000e+01, 1.9300000e+01, 1.9400000e+01, 1.9500000e+01, 1.9600000e+01, 1.9700000e+01, 1.9800000e+01, 1.9900000e+01, 2.0000000e+01, 2.0100000e+01, 2.0200000e+01, 2.0300000e+01, 2.0400000e+01, 2.0500000e+01, 2.0600000e+01, 2.0700000e+01, 2.0800000e+01, 2.0900000e+01, 2.1000000e+01, 2.1100000e+01, 2.1200000e+01, 2.1300000e+01, 2.1400000e+01, 2.1500000e+01, 2.1600000e+01, 2.1700000e+01, 2.1800000e+01, 2.1900000e+01, 2.2000000e+01, 2.2100000e+01, 2.2200000e+01, 2.2300000e+01, 2.2400000e+01, 2.2500000e+01, 2.2600000e+01, 2.2700000e+01, 2.2800000e+01, 2.2900000e+01, 2.3000000e+01, 2.3100000e+01, 2.3200000e+01, 2.3300000e+01, 2.3400000e+01, 2.3500000e+01, 2.3600000e+01, 2.3700000e+01, 2.3800000e+01, 2.3900000e+01, 2.4000000e+01, 2.4100000e+01, 2.4200000e+01, 2.4300000e+01, 2.4400000e+01, 2.4500000e+01, 2.4600000e+01, 2.4700000e+01, 2.4800000e+01, 2.4900000e+01, 2.5000000e+01, 2.5100000e+01, 2.5200000e+01, 2.5300000e+01, 2.5400000e+01, 2.5500000e+01, 2.5600000e+01, 2.5700000e+01, 2.5800000e+01, 2.5900000e+01, 2.6000000e+01, 2.6100000e+01, 2.6200000e+01, 2.6300000e+01, 2.6400000e+01, 2.6500000e+01, 2.6600000e+01, 2.6700000e+01, 2.6800000e+01, 2.6900000e+01, 2.7000000e+01, 2.7100000e+01, 2.7200000e+01, 2.7300000e+01, 2.7400000e+01, 2.7500000e+01, 2.7600000e+01, 2.7700000e+01, 2.7800000e+01, 2.7900000e+01, 2.8000000e+01, 2.8100000e+01, 2.8200000e+01, 2.8300000e+01, 2.8400000e+01, 2.8500000e+01, 2.8600000e+01, 2.8700000e+01, 2.8800000e+01, 2.8900000e+01, 2.9000000e+01, 2.9100000e+01, 2.9200000e+01, 2.9300000e+01, 2.9400000e+01, 2.9500000e+01, 2.9600000e+01, 2.9700000e+01, 2.9800000e+01, 2.9900000e+01, 3.0000000e+01, 3.0100000e+01, 3.0200000e+01, 3.0300000e+01, 3.0400000e+01, 3.0500000e+01, 3.0600000e+01, 3.0700000e+01, 3.0800000e+01, 3.0900000e+01, 3.1000000e+01, 3.1100000e+01, 3.1200000e+01, 3.1300000e+01, 3.1400000e+01, 3.1500000e+01, 3.1600000e+01, 3.1700000e+01, 3.1800000e+01, 3.1900000e+01, 3.2000000e+01, 3.2100000e+01, 3.2200000e+01, 3.2300000e+01, 3.2400000e+01, 3.2500000e+01, 3.2600000e+01, 3.2700000e+01, 3.2800000e+01, 3.2900000e+01, 3.3000000e+01, 3.3100000e+01, 3.3200000e+01, 3.3300000e+01, 3.3400000e+01, 3.3500000e+01, 3.3600000e+01, 3.3700000e+01, 3.3800000e+01, 3.3900000e+01, 3.4000000e+01, 3.4100000e+01, 3.4200000e+01, 3.4300000e+01, 3.4400000e+01, 3.4500000e+01, 3.4600000e+01, 3.4700000e+01, 3.4800000e+01, 3.4900000e+01, 3.5000000e+01, 3.5100000e+01, 3.5200000e+01, 3.5300000e+01, 3.5400000e+01, 3.5500000e+01, 3.5600000e+01, 3.5700000e+01, 3.5800000e+01, 3.5900000e+01, 3.6000000e+01, 3.6100000e+01, 3.6200000e+01, 3.6300000e+01, 3.6400000e+01, 3.6500000e+01, 3.6600000e+01, 3.6700000e+01, 3.6800000e+01, 3.6900000e+01, 3.7000000e+01, 3.7100000e+01, 3.7200000e+01, 3.7300000e+01, 3.7400000e+01, 3.7500000e+01, 3.7600000e+01, 3.7700000e+01, 3.7800000e+01, 3.7900000e+01, 3.8000000e+01, 3.8100000e+01, 3.8200000e+01, 3.8300000e+01, 3.8400000e+01, 3.8500000e+01, 3.8600000e+01, 3.8700000e+01, 3.8800000e+01, 3.8900000e+01, 3.9000000e+01, 3.9100000e+01, 3.9200000e+01, 3.9300000e+01, 3.9400000e+01, 3.9500000e+01, 3.9600000e+01, 3.9700000e+01, 3.9800000e+01, 3.9900000e+01, 4.0000000e+01, 4.0100000e+01, 4.0200000e+01, 4.0300000e+01, 4.0400000e+01, 4.0500000e+01, 4.0600000e+01, 4.0700000e+01, 4.0800000e+01, 4.0900000e+01, 4.1000000e+01, 4.1100000e+01, 4.1200000e+01, 4.1300000e+01, 4.1400000e+01, 4.1500000e+01, 4.1600000e+01, 4.1700000e+01, 4.1800000e+01, 4.1900000e+01, 4.2000000e+01, 4.2100000e+01, 4.2200000e+01, 4.2300000e+01, 4.2400000e+01, 4.2500000e+01, 4.2600000e+01, 4.2700000e+01, 4.2800000e+01, 4.2900000e+01, 4.3000000e+01, 4.3100000e+01, 4.3200000e+01, 4.3300000e+01, 4.3400000e+01, 4.3500000e+01, 4.3600000e+01, 4.3700000e+01, 4.3800000e+01, 4.3900000e+01, 4.4000000e+01, 4.4100000e+01, 4.4200000e+01, 4.4300000e+01, 4.4400000e+01, 4.4500000e+01, 4.4600000e+01, 4.4700000e+01, 4.4800000e+01, 4.4900000e+01, 4.5000000e+01, 4.5100000e+01, 4.5200000e+01, 4.5300000e+01, 4.5400000e+01, 4.5500000e+01, 4.5600000e+01, 4.5700000e+01, 4.5800000e+01, 4.5900000e+01, 4.6000000e+01, 4.6100000e+01, 4.6200000e+01, 4.6300000e+01, 4.6400000e+01, 4.6500000e+01, 4.6600000e+01, 4.6700000e+01, 4.6800000e+01, 4.6900000e+01, 4.7000000e+01, 4.7100000e+01, 4.7200000e+01, 4.7300000e+01, 4.7400000e+01, 4.7500000e+01, 4.7600000e+01, 4.7700000e+01, 4.7800000e+01, 4.7900000e+01, 4.8000000e+01, 4.8100000e+01, 4.8200000e+01, 4.8300000e+01, 4.8400000e+01, 4.8500000e+01, 4.8600000e+01, 4.8700000e+01, 4.8800000e+01, 4.8900000e+01, 4.9000000e+01, 4.9100000e+01, 4.9200000e+01, 4.9300000e+01, 4.9400000e+01, 4.9500000e+01, 4.9600000e+01, 4.9700000e+01, 4.9800000e+01, 4.9900000e+01, 5.0000000e+01, 5.0100000e+01, 5.0200000e+01, 5.0300000e+01, 5.0400000e+01, 5.0500000e+01, 5.0600000e+01, 5.0700000e+01, 5.0800000e+01, 5.0900000e+01, 5.1000000e+01, 5.1100000e+01, 5.1200000e+01, 5.1300000e+01, 5.1400000e+01, 5.1500000e+01, 5.1600000e+01, 5.1700000e+01, 5.1800000e+01, 5.1900000e+01, 5.2000000e+01, 5.2100000e+01, 5.2200000e+01, 5.2300000e+01, 5.2400000e+01, 5.2500000e+01, 5.2600000e+01, 5.2700000e+01, 5.2800000e+01, 5.2900000e+01, 5.3000000e+01, 5.3100000e+01, 5.3200000e+01, 5.3300000e+01, 5.3400000e+01, 5.3500000e+01, 5.3600000e+01, 5.3700000e+01, 5.3800000e+01, 5.3900000e+01, 5.4000000e+01, 5.4100000e+01, 5.4200000e+01, 5.4300000e+01, 5.4400000e+01, 5.4500000e+01, 5.4600000e+01, 5.4700000e+01, 5.4800000e+01, 5.4900000e+01, 5.5000000e+01, 5.5100000e+01, 5.5200000e+01, 5.5300000e+01, 5.5400000e+01, 5.5500000e+01, 5.5600000e+01, 5.5700000e+01, 5.5800000e+01, 5.5900000e+01, 5.6000000e+01, 5.6100000e+01, 5.6200000e+01, 5.6300000e+01, 5.6400000e+01, 5.6500000e+01, 5.6600000e+01, 5.6700000e+01, 5.6800000e+01, 5.6900000e+01, 5.7000000e+01, 5.7100000e+01, 5.7200000e+01, 5.7300000e+01, 5.7400000e+01, 5.7500000e+01, 5.7600000e+01, 5.7700000e+01, 5.7800000e+01, 5.7900000e+01, 5.8000000e+01},
- step = { 0.0000000e+00, 3.1168567e-09, 6.2831991e-09, 9.4994836e-09, 1.2766261e-08, 1.6084040e-08, 1.9453174e-08, 2.2873883e-08, 2.6346367e-08, 2.9870911e-08, 3.3447887e-08, 3.7077657e-08, 4.0760483e-08, 4.4496525e-08, 4.8285935e-08, 5.2128957e-08, 5.6025933e-08, 5.9977200e-08, 6.3982967e-08, 6.8043298e-08, 7.2158217e-08, 7.6327864e-08, 8.0552561e-08, 8.4832718e-08, 8.9168661e-08, 9.3560545e-08, 9.8008405e-08, 1.0251232e-07, 1.0707252e-07, 1.1168936e-07, 1.1636319e-07, 1.2109419e-07, 1.2588244e-07, 1.3072794e-07, 1.3563080e-07, 1.4059122e-07, 1.4560941e-07, 1.5068543e-07, 1.5581925e-07, 1.6101081e-07, 1.6626019e-07, 1.7156766e-07, 1.7693355e-07, 1.8235808e-07, 1.8784138e-07, 1.9338351e-07, 1.9898473e-07, 2.0464555e-07, 2.1036664e-07, 2.1614864e-07, 2.2199202e-07, 2.2789713e-07, 2.3386436e-07, 2.3989427e-07, 2.4598764e-07, 2.5214530e-07, 2.5836803e-07, 2.6465646e-07, 2.7101131e-07, 2.7743341e-07, 2.8392380e-07, 2.9048359e-07, 2.9711376e-07, 3.0381515e-07, 3.1058863e-07, 3.1743519e-07, 3.2435605e-07, 3.3135249e-07, 3.3842568e-07, 3.4557654e-07, 3.5280589e-07, 3.6011463e-07, 3.6750389e-07, 3.7497494e-07, 3.8252905e-07, 3.9016726e-07, 3.9789042e-07, 4.0569932e-07, 4.1359495e-07, 4.2157845e-07, 4.2965099e-07, 4.3781359e-07, 4.4606706e-07, 4.5441217e-07, 4.6284981e-07, 4.7138098e-07, 4.8000672e-07, 4.8872790e-07, 4.9754514e-07, 5.0645901e-07, 5.1547016e-07, 5.2457949e-07, 5.3378793e-07, 5.4309631e-07, 5.5250510e-07, 5.6201456e-07, 5.7162494e-07, 5.8133669e-07, 5.9115047e-07, 6.0106690e-07, 6.1108643e-07, 6.2120927e-07, 6.3143565e-07, 6.4176600e-07, 6.5220100e-07, 6.6274144e-07, 6.7338802e-07, 6.8414125e-07, 6.9500163e-07, 7.0596983e-07, 7.1704673e-07, 7.2823335e-07, 7.3953055e-07, 7.5093900e-07, 7.6245924e-07, 7.7409198e-07, 7.8583824e-07, 7.9769927e-07, 8.0967625e-07, 8.2177016e-07, 8.3398178e-07, 8.4631198e-07, 8.5876196e-07, 8.7133325e-07, 8.8402747e-07, 8.9684610e-07, 9.0979038e-07, 9.2286154e-07, 9.3606098e-07, 9.4939040e-07, 9.6285157e-07, 9.7644616e-07, 9.9017555e-07, 1.0040410e-06, 1.0180440e-06, 1.0321862e-06, 1.0464694e-06, 1.0608951e-06, 1.0754648e-06, 1.0901795e-06, 1.1050402e-06, 1.1200482e-06, 1.1352049e-06, 1.1505118e-06, 1.1659695e-06, 1.1815788e-06, 1.1973401e-06, 1.2132541e-06, 1.2293217e-06, 1.2455439e-06, 1.2619215e-06, 1.2784547e-06, 1.2951438e-06, 1.3119890e-06, 1.3289909e-06, 1.3461501e-06, 1.3634670e-06, 1.3809419e-06, 1.3985748e-06, 1.4163657e-06, 1.4343150e-06, 1.4524236e-06, 1.4706920e-06, 1.4891207e-06, 1.5077100e-06, 1.5264602e-06, 1.5453722e-06, 1.5644472e-06, 1.5836866e-06, 1.6030913e-06, 1.6226622e-06, 1.6424001e-06, 1.6623059e-06, 1.6823812e-06, 1.7026276e-06, 1.7230466e-06, 1.7436392e-06, 1.7644063e-06, 1.7853490e-06, 1.8064690e-06, 1.8277681e-06, 1.8492482e-06, 1.8709111e-06, 1.8927583e-06, 1.9147915e-06, 1.9370130e-06, 1.9594252e-06, 1.9820307e-06, 2.0048318e-06, 2.0278304e-06, 2.0510287e-06, 2.0744292e-06, 2.0980350e-06, 2.1218492e-06, 2.1458745e-06, 2.1701134e-06, 2.1945681e-06, 2.2192412e-06, 2.2441359e-06, 2.2692553e-06, 2.2946026e-06, 2.3201804e-06, 2.3459910e-06, 2.3720368e-06, 2.3983206e-06, 2.4248454e-06, 2.4516144e-06, 2.4786302e-06, 2.5058954e-06, 2.5334123e-06, 2.5611839e-06, 2.5892133e-06, 2.6175037e-06, 2.6460578e-06, 2.6748779e-06, 2.7039663e-06, 2.7333256e-06, 2.7629591e-06, 2.7928697e-06, 2.8230601e-06, 2.8535324e-06, 2.8842882e-06, 2.9153294e-06, 2.9466585e-06, 2.9782782e-06, 3.0101913e-06, 3.0424001e-06, 3.0749066e-06, 3.1077126e-06, 3.1408207e-06, 3.1742336e-06, 3.2079540e-06, 3.2419842e-06, 3.2763264e-06, 3.3109824e-06, 3.3459547e-06, 3.3812459e-06, 3.4168590e-06, 3.4527964e-06, 3.4890600e-06, 3.5256518e-06, 3.5625746e-06, 3.5998316e-06, 3.6374267e-06, 3.6753633e-06, 3.7136443e-06, 3.7522724e-06, 3.7912503e-06, 3.8305817e-06, 3.8702706e-06, 3.9103212e-06, 3.9507373e-06, 3.9915221e-06, 4.0326787e-06, 4.0742109e-06, 4.1161224e-06, 4.1584175e-06, 4.2010997e-06, 4.2441722e-06, 4.2876385e-06, 4.3315023e-06, 4.3757679e-06, 4.4204400e-06, 4.4655225e-06, 4.5110187e-06, 4.5569319e-06, 4.6032658e-06, 4.6500251e-06, 4.6972151e-06, 4.7448410e-06, 4.7929073e-06, 4.8414182e-06, 4.8903780e-06, 4.9397917e-06, 4.9896650e-06, 5.0400039e-06, 5.0908137e-06, 5.1420989e-06, 5.1938640e-06, 5.2461134e-06, 5.2988520e-06, 5.3520846e-06, 5.4058156e-06, 5.4600484e-06, 5.5147865e-06, 5.5700339e-06, 5.6257953e-06, 5.6820755e-06, 5.7388788e-06, 5.7962086e-06, 5.8540676e-06, 5.9124592e-06, 5.9713875e-06, 6.0308573e-06, 6.0908733e-06, 6.1514395e-06, 6.2125588e-06, 6.2742342e-06, 6.3364693e-06, 6.3992685e-06, 6.4626369e-06, 6.5265788e-06, 6.5910984e-06, 6.6561997e-06, 6.7218877e-06, 6.7881682e-06, 6.8550477e-06, 6.9225322e-06, 6.9906273e-06, 7.0593385e-06, 7.1286725e-06, 7.1986366e-06, 7.2692391e-06, 7.3404881e-06, 7.4123906e-06, 7.4849533e-06, 7.5581834e-06, 7.6320896e-06, 7.7066816e-06, 7.7819696e-06, 7.8579631e-06, 7.9346706e-06, 8.0121005e-06, 8.0902621e-06, 8.1691655e-06, 8.2488212e-06, 8.3292395e-06, 8.4104296e-06, 8.4924008e-06, 8.5751630e-06, 8.6587268e-06, 8.7431037e-06, 8.8283040e-06, 8.9143374e-06, 9.0012126e-06, 9.0889386e-06, 9.1775256e-06, 9.2669840e-06, 9.3573234e-06, 9.4485519e-06, 9.5406760e-06, 9.6337021e-06, 9.7276377e-06, 9.8224910e-06, 9.9182702e-06, 1.0014983e-05, 1.0112635e-05, 1.0211232e-05, 1.0310782e-05, 1.0411293e-05, 1.0512773e-05, 1.0615231e-05, 1.0718677e-05, 1.0823117e-05, 1.0928559e-05, 1.1035012e-05, 1.1142488e-05, 1.1250994e-05, 1.1360538e-05, 1.1471128e-05, 1.1582771e-05, 1.1695476e-05, 1.1809253e-05, 1.1924113e-05, 1.2040065e-05, 1.2157117e-05, 1.2275276e-05, 1.2394553e-05, 1.2514959e-05, 1.2636507e-05, 1.2759208e-05, 1.2883073e-05, 1.3008110e-05, 1.3134332e-05, 1.3261752e-05, 1.3390385e-05, 1.3520246e-05, 1.3651350e-05, 1.3783710e-05, 1.3917341e-05, 1.4052261e-05, 1.4188487e-05, 1.4326039e-05, 1.4464932e-05, 1.4605185e-05, 1.4746813e-05, 1.4889836e-05, 1.5034274e-05, 1.5180149e-05, 1.5327480e-05, 1.5476284e-05, 1.5626577e-05, 1.5778380e-05, 1.5931712e-05, 1.6086596e-05, 1.6243054e-05, 1.6401103e-05, 1.6560760e-05, 1.6722042e-05, 1.6884967e-05, 1.7049555e-05, 1.7215824e-05, 1.7383790e-05, 1.7553467e-05, 1.7724870e-05, 1.7898014e-05, 1.8072918e-05, 1.8249598e-05, 1.8428073e-05, 1.8608358e-05, 1.8790472e-05, 1.8974435e-05, 1.9160272e-05, 1.9348006e-05, 1.9537660e-05, 1.9729251e-05, 1.9922799e-05, 2.0118322e-05, 2.0315847e-05, 2.0515397e-05, 2.0716998e-05, 2.0920673e-05, 2.1126442e-05, 2.1334326e-05, 2.1544347e-05, 2.1756532e-05, 2.1970908e-05, 2.2187503e-05, 2.2406342e-05, 2.2627453e-05, 2.2850865e-05, 2.3076609e-05, 2.3304718e-05, 2.3535221e-05, 2.3768147e-05, 2.4003525e-05, 2.4241389e-05, 2.4481776e-05, 2.4724725e-05, 2.4970269e-05, 2.5218439e-05, 2.5469263e-05, 2.5722768e-05, 2.5978991e-05, 2.6237968e-05, 2.6499735e-05, 2.6764326e-05, 2.7031764e-05, 2.7302076e-05, 2.7575287e-05, 2.7851429e-05, 2.8130532e-05, 2.8412631e-05, 2.8697760e-05, 2.8985953e-05, 2.9277253e-05, 2.9571704e-05, 2.9869352e-05, 3.0170237e-05, 3.0474400e-05, 3.0781881e-05, 3.1092726e-05, 3.1406991e-05, 3.1724731e-05, 3.2046003e-05, 3.2370854e-05, 3.2699327e-05, 3.3031471e-05, 3.3367341e-05, 3.3707004e-05, 3.4050531e-05, 3.4397987e-05, 3.4749437e-05, 3.5104940e-05, 3.5464560e-05, 3.5828361e-05, 3.6196408e-05, 3.6568765e-05, 3.6945489e-05, 3.7326640e-05, 3.7712278e-05, 3.8102465e-05, 3.8497261e-05, 3.8896718e-05, 3.9300878e-05, 3.9709786e-05, 4.0123499e-05, 4.0542092e-05, 4.0965652e-05, 4.1394266e-05, 4.1828014e-05, 4.2266964e-05, 4.2711188e-05, 4.3160768e-05, 4.3615802e-05, 4.4076396e-05, 4.4542661e-05, 4.5014704e-05, 4.5492635e-05, 4.5976565e-05, 4.6466612e-05, 4.6962895e-05, 4.7465530e-05, 4.7974623e-05, 4.8490283e-05, 4.9012626e-05, 4.9541779e-05, 5.0077859e-05, 5.0620968e-05, 5.1171184e-05, 5.1728582e-05, 5.2293254e-05, 5.2865325e-05, 5.3444951e-05, 5.4032298e-05, 5.4627531e-05, 5.5230798e-05, 5.5842245e-05, 5.6462034e-05, 5.7090355e-05, 5.7727419e-05, 5.8373442e-05, 5.9028633e-05, 5.9693197e-05, 6.0367335e-05, 6.1051251e-05, 6.1745130e-05, 6.2449134e-05, 6.3163412e-05, 6.3888138e-05, 6.4623537e-05, 6.5369894e-05, 6.6127530e-05, 6.6896771e-05, 6.7677915e-05, 6.8471240e-05, 6.9277041e-05, 7.0095669e-05, 7.0927537e-05, 7.1773089e-05, 7.2632735e-05, 7.3506824e-05, 7.4395678e-05, 7.5299644e-05, 7.6219136e-05, 7.7154626e-05, 7.8106628e-05, 7.9075712e-05, 8.0062515e-05, 8.1067750e-05, 8.2092171e-05, 8.3136512e-05, 8.4201451e-05, 8.5287629e-05, 8.6395718e-05, 8.7526538e-05, 8.8681165e-05, 8.9860920e-05, 9.1067196e-05, 9.2301270e-05, 9.3564298e-05, 9.4857542e-05, 9.6182639e-05, 9.7541712e-05, 9.8937182e-05, 1.0037154e-04, 1.0184737e-04, 1.0336763e-04, 1.0493580e-04, 1.0655591e-04, 1.0823267e-04, 1.0997182e-04, 1.1178031e-04, 1.1366633e-04, 1.1563949e-04, 1.1771088e-04, 1.1989339e-04, 1.2220285e-04, 1.2465928e-04, 1.2729284e-04, 1.3016693e-04, 1.3327016e-04, 1.3637338e-04, 1.3924747e-04, 1.4188103e-04, 1.4433746e-04, 1.4664693e-04, 1.4882943e-04, 1.5090082e-04, 1.5287398e-04, 1.5476000e-04, 1.5656849e-04, 1.5830764e-04, 1.5998440e-04, 1.6160451e-04, 1.6317269e-04, 1.6469295e-04, 1.6616878e-04, 1.6760313e-04, 1.6899860e-04, 1.7035767e-04, 1.7168277e-04, 1.7297602e-04, 1.7423904e-04, 1.7547312e-04, 1.7667939e-04, 1.7785915e-04, 1.7901378e-04, 1.8014460e-04, 1.8125268e-04, 1.8233886e-04, 1.8340380e-04, 1.8444814e-04, 1.8547256e-04, 1.8647780e-04, 1.8746460e-04, 1.8843369e-04, 1.8938569e-04, 1.9032118e-04, 1.9124067e-04, 1.9214464e-04, 1.9303349e-04, 1.9390758e-04, 1.9476722e-04, 1.9561278e-04, 1.9644464e-04, 1.9726327e-04, 1.9806907e-04, 1.9886240e-04, 1.9964354e-04, 2.0041278e-04, 2.0117042e-04, 2.0191678e-04, 2.0265218e-04, 2.0337690e-04, 2.0409118e-04, 2.0479518e-04, 2.0548906e-04, 2.0617298e-04, 2.0684712e-04, 2.0751168e-04, 2.0816687e-04, 2.0881289e-04, 2.0944996e-04, 2.1007828e-04, 2.1069807e-04, 2.1130952e-04, 2.1191278e-04, 2.1250802e-04, 2.1309536e-04, 2.1367499e-04, 2.1424706e-04, 2.1481173e-04, 2.1536913e-04, 2.1591935e-04, 2.1646245e-04, 2.1699854e-04, 2.1752769e-04, 2.1805003e-04, 2.1856569e-04, 2.1907478e-04, 2.1957742e-04, 2.2007370e-04, 2.2056375e-04, 2.2104768e-04, 2.2152561e-04, 2.2199765e-04, 2.2246392e-04, 2.2292451e-04, 2.2337955e-04, 2.2382913e-04, 2.2427335e-04, 2.2471230e-04, 2.2514605e-04, 2.2557466e-04, 2.2599822e-04, 2.2641681e-04, 2.2683053e-04, 2.2723944e-04, 2.2764360e-04, 2.2804305e-04, 2.2843785e-04, 2.2882804e-04, 2.2921367e-04, 2.2959482e-04, 2.2997155e-04, 2.3034391e-04, 2.3071195e-04, 2.3107575e-04, 2.3143537e-04, 2.3179088e-04, 2.3214233e-04, 2.3248978e-04, 2.3283331e-04, 2.3317297e-04, 2.3350884e-04, 2.3384099e-04, 2.3416946e-04, 2.3449431e-04, 2.3481558e-04, 2.3513332e-04, 2.3544759e-04, 2.3575843e-04, 2.3606591e-04, 2.3637008e-04, 2.3667096e-04, 2.3696861e-04, 2.3726306e-04, 2.3755436e-04, 2.3784255e-04, 2.3812768e-04, 2.3840978e-04, 2.3868889e-04, 2.3896503e-04, 2.3923824e-04, 2.3950855e-04, 2.3977599e-04, 2.4004058e-04, 2.4030235e-04, 2.4056132e-04, 2.4081755e-04, 2.4107105e-04, 2.4132187e-04, 2.4157004e-04, 2.4181559e-04, 2.4205854e-04, 2.4229892e-04, 2.4253679e-04, 2.4277217e-04, 2.4300509e-04, 2.4323560e-04, 2.4346370e-04, 2.4368945e-04, 2.4391286e-04, 2.4413397e-04, 2.4435281e-04, 2.4456941e-04, 2.4478378e-04, 2.4499597e-04, 2.4520599e-04, 2.4541387e-04, 2.4561964e-04, 2.4582332e-04, 2.4602492e-04, 2.4622447e-04, 2.4642199e-04, 2.4661752e-04, 2.4681106e-04, 2.4700265e-04, 2.4719231e-04, 2.4738004e-04, 2.4756588e-04, 2.4774984e-04, 2.4793196e-04, 2.4811224e-04, 2.4829072e-04, 2.4846740e-04, 2.4864230e-04, 2.4881544e-04, 2.4898685e-04, 2.4915652e-04, 2.4932449e-04, 2.4949076e-04, 2.4965535e-04, 2.4981827e-04, 2.4997955e-04, 2.5013921e-04, 2.5029726e-04, 2.5045372e-04, 2.5060860e-04, 2.5076193e-04, 2.5091374e-04, 2.5106403e-04, 2.5121283e-04, 2.5136016e-04, 2.5150604e-04, 2.5165048e-04, 2.5179350e-04, 2.5193513e-04, 2.5207538e-04, 2.5221427e-04, 2.5235183e-04, 2.5248805e-04, 2.5262297e-04, 2.5275660e-04, 2.5288896e-04, 2.5302007e-04, 2.5314993e-04, 2.5327856e-04, 2.5340598e-04, 2.5353220e-04, 2.5365724e-04, 2.5378111e-04, 2.5390381e-04, 2.5402535e-04, 2.5414576e-04, 2.5426504e-04, 2.5438320e-04, 2.5450025e-04, 2.5461620e-04, 2.5473106e-04, 2.5484484e-04, 2.5495754e-04, 2.5506919e-04, 2.5517978e-04, 2.5528932e-04, 2.5539783e-04, 2.5550530e-04, 2.5561176e-04, 2.5571720e-04, 2.5582164e-04, 2.5592508e-04, 2.5602754e-04, 2.5612902e-04, 2.5622953e-04, 2.5632908e-04, 2.5642768e-04, 2.5652533e-04, 2.5662204e-04, 2.5671782e-04, 2.5681268e-04, 2.5690661e-04, 2.5699964e-04, 2.5709176e-04, 2.5718299e-04, 2.5727333e-04, 2.5736279e-04, 2.5745138e-04, 2.5753910e-04, 2.5762598e-04, 2.5771201e-04, 2.5779721e-04, 2.5788159e-04, 2.5796515e-04, 2.5804791e-04, 2.5812988e-04, 2.5821107e-04, 2.5829149e-04, 2.5837115e-04, 2.5845005e-04, 2.5852821e-04, 2.5860564e-04, 2.5868235e-04, 2.5875834e-04, 2.5883363e-04, 2.5890822e-04, 2.5898213e-04, 2.5905536e-04, 2.5912792e-04, 2.5919983e-04, 2.5927107e-04, 2.5934168e-04, 2.5941164e-04, 2.5948098e-04, 2.5954969e-04, 2.5961778e-04, 2.5968527e-04, 2.5975215e-04, 2.5981843e-04, 2.5988411e-04, 2.5994922e-04, 2.6001373e-04, 2.6007768e-04, 2.6014105e-04, 2.6020384e-04, 2.6026608e-04, 2.6032775e-04, 2.6038887e-04, 2.6044944e-04, 2.6050946e-04, 2.6056893e-04, 2.6062785e-04, 2.6068625e-04, 2.6074411e-04, 2.6080143e-04, 2.6085824e-04, 2.6091452e-04, 2.6097028e-04, 2.6102553e-04, 2.6108027e-04, 2.6113450e-04, 2.6118823e-04, 2.6124146e-04, 2.6129420e-04, 2.6134645e-04, 2.6139821e-04, 2.6144950e-04, 2.6150031e-04, 2.6155065e-04, 2.6160052e-04, 2.6164994e-04, 2.6169890e-04, 2.6174741e-04, 2.6179547e-04, 2.6184310e-04, 2.6189029e-04, 2.6193705e-04, 2.6198338e-04, 2.6202929e-04, 2.6207479e-04, 2.6211987e-04, 2.6216455e-04, 2.6220881e-04, 2.6225268e-04, 2.6229614e-04, 2.6233921e-04, 2.6238190e-04, 2.6242419e-04, 2.6246610e-04, 2.6250763e-04, 2.6254879e-04, 2.6258958e-04, 2.6262999e-04, 2.6267004e-04, 2.6270973e-04, 2.6274906e-04, 2.6278804e-04, 2.6282667e-04, 2.6286495e-04, 2.6290289e-04, 2.6294048e-04, 2.6297774e-04, 2.6301466e-04, 2.6305125e-04, 2.6308752e-04, 2.6312345e-04, 2.6315907e-04, 2.6319436e-04, 2.6322933e-04, 2.6326399e-04, 2.6329833e-04, 2.6333236e-04, 2.6336608e-04, 2.6339949e-04, 2.6343260e-04, 2.6346541e-04, 2.6349791e-04, 2.6353012e-04, 2.6356204e-04, 2.6359366e-04, 2.6362498e-04, 2.6365603e-04, 2.6368678e-04, 2.6371725e-04, 2.6374744e-04, 2.6377735e-04, 2.6380699e-04, 2.6383635e-04, 2.6386544e-04, 2.6389426e-04, 2.6392281e-04, 2.6395110e-04, 2.6397913e-04, 2.6400690e-04, 2.6403442e-04, 2.6406168e-04, 2.6408870e-04, 2.6411547e-04, 2.6414199e-04, 2.6416828e-04, 2.6419432e-04, 2.6422013e-04, 2.6424571e-04, 2.6427106e-04, 2.6429618e-04, 2.6432107e-04, 2.6434575e-04, 2.6437020e-04, 2.6439444e-04, 2.6441846e-04, 2.6444228e-04, 2.6446588e-04, 2.6448928e-04, 2.6451248e-04, 2.6453548e-04, 2.6455828e-04, 2.6458089e-04, 2.6460330e-04, 2.6462552e-04, 2.6464756e-04, 2.6466940e-04, 2.6469107e-04, 2.6471255e-04, 2.6473384e-04, 2.6475496e-04, 2.6477591e-04, 2.6479667e-04, 2.6481727e-04, 2.6483769e-04, 2.6485793e-04, 2.6487801e-04, 2.6489791e-04, 2.6491765e-04, 2.6493722e-04, 2.6495663e-04, 2.6497587e-04, 2.6499494e-04, 2.6501385e-04, 2.6503260e-04, 2.6505119e-04, 2.6506962e-04, 2.6508789e-04, 2.6510600e-04, 2.6512395e-04, 2.6514174e-04, 2.6515937e-04, 2.6517685e-04, 2.6519416e-04, 2.6521132e-04, 2.6522832e-04, 2.6524517e-04, 2.6526186e-04, 2.6527839e-04, 2.6529477e-04, 2.6531099e-04, 2.6532706e-04, 2.6534297e-04, 2.6535873e-04, 2.6537434e-04, 2.6538980e-04, 2.6540511e-04, 2.6542027e-04, 2.6543527e-04, 2.6545013e-04, 2.6546485e-04, 2.6547942e-04, 2.6549384e-04, 2.6550813e-04, 2.6552227e-04, 2.6553627e-04, 2.6555014e-04, 2.6556387e-04, 2.6557746e-04, 2.6559092e-04, 2.6560425e-04, 2.6561745e-04, 2.6563052e-04, 2.6564347e-04, 2.6565629e-04, 2.6566898e-04, 2.6568155e-04, 2.6569400e-04, 2.6570633e-04, 2.6571854e-04, 2.6573064e-04, 2.6574261e-04, 2.6575448e-04, 2.6576622e-04, 2.6577785e-04, 2.6578937e-04, 2.6580078e-04, 2.6581208e-04, 2.6582327e-04, 2.6583434e-04, 2.6584531e-04, 2.6585617e-04, 2.6586693e-04, 2.6587757e-04, 2.6588811e-04, 2.6589855e-04, 2.6590888e-04, 2.6591910e-04, 2.6592923e-04, 2.6593925e-04, 2.6594916e-04, 2.6595898e-04, 2.6596869e-04, 2.6597830e-04, 2.6598781e-04, 2.6599722e-04, 2.6600653e-04, 2.6601573e-04, 2.6602484e-04, 2.6603385e-04, 2.6604277e-04, 2.6605159e-04, 2.6606031e-04, 2.6606893e-04, 2.6607746e-04, 2.6608590e-04, 2.6609425e-04, 2.6610250e-04, 2.6611066e-04, 2.6611874e-04, 2.6612672e-04, 2.6613461e-04, 2.6614242e-04, 2.6615015e-04, 2.6615778e-04, 2.6616534e-04, 2.6617281e-04, 2.6618020e-04, 2.6618751e-04, 2.6619474e-04, 2.6620189e-04, 2.6620896e-04, 2.6621596e-04, 2.6622288e-04, 2.6622973e-04, 2.6623650e-04, 2.6624320e-04, 2.6624983e-04, 2.6625639e-04, 2.6626288e-04, 2.6626930e-04, 2.6627566e-04, 2.6628195e-04, 2.6628817e-04, 2.6629433e-04, 2.6630042e-04, 2.6630645e-04, 2.6631242e-04, 2.6631832e-04, 2.6632417e-04, 2.6632995e-04, 2.6633567e-04, 2.6634133e-04, 2.6634693e-04, 2.6635247e-04, 2.6635796e-04, 2.6636338e-04, 2.6636875e-04, 2.6637405e-04, 2.6637930e-04, 2.6638449e-04, 2.6638963e-04, 2.6639470e-04, 2.6639972e-04, 2.6640468e-04, 2.6640959e-04, 2.6641443e-04, 2.6641922e-04, 2.6642395e-04, 2.6642862e-04, 2.6643324e-04, 2.6643780e-04, 2.6644231e-04, 2.6644675e-04, 2.6645115e-04, 2.6645548e-04, 2.6645976e-04, 2.6646399e-04, 2.6646816e-04, 2.6647227e-04, 2.6647633e-04, 2.6648034e-04, 2.6648429e-04, 2.6648818e-04, 2.6649203e-04, 2.6649582e-04, 2.6649955e-04, 2.6650324e-04, 2.6650687e-04, 2.6651044e-04, 2.6651397e-04, 2.6651744e-04, 2.6652086e-04, 2.6652423e-04, 2.6652755e-04, 2.6653081e-04, 2.6653403e-04, 2.6653720e-04},
- continuous = true,
- nFuture=500,
- nPast=500);
-
- // // Zero-phase, ds = 0.05m
- // extends Interpolators.StepResponse(
- // T = { -4.3900000e+01, -4.3850000e+01, -4.3800000e+01, -4.3750000e+01, -4.3700000e+01, -4.3650000e+01, -4.3600000e+01, -4.3550000e+01, -4.3500000e+01, -4.3450000e+01, -4.3400000e+01, -4.3350000e+01, -4.3300000e+01, -4.3250000e+01, -4.3200000e+01, -4.3150000e+01, -4.3100000e+01, -4.3050000e+01, -4.3000000e+01, -4.2950000e+01, -4.2900000e+01, -4.2850000e+01, -4.2800000e+01, -4.2750000e+01, -4.2700000e+01, -4.2650000e+01, -4.2600000e+01, -4.2550000e+01, -4.2500000e+01, -4.2450000e+01, -4.2400000e+01, -4.2350000e+01, -4.2300000e+01, -4.2250000e+01, -4.2200000e+01, -4.2150000e+01, -4.2100000e+01, -4.2050000e+01, -4.2000000e+01, -4.1950000e+01, -4.1900000e+01, -4.1850000e+01, -4.1800000e+01, -4.1750000e+01, -4.1700000e+01, -4.1650000e+01, -4.1600000e+01, -4.1550000e+01, -4.1500000e+01, -4.1450000e+01, -4.1400000e+01, -4.1350000e+01, -4.1300000e+01, -4.1250000e+01, -4.1200000e+01, -4.1150000e+01, -4.1100000e+01, -4.1050000e+01, -4.1000000e+01, -4.0950000e+01, -4.0900000e+01, -4.0850000e+01, -4.0800000e+01, -4.0750000e+01, -4.0700000e+01, -4.0650000e+01, -4.0600000e+01, -4.0550000e+01, -4.0500000e+01, -4.0450000e+01, -4.0400000e+01, -4.0350000e+01, -4.0300000e+01, -4.0250000e+01, -4.0200000e+01, -4.0150000e+01, -4.0100000e+01, -4.0050000e+01, -4.0000000e+01, -3.9950000e+01, -3.9900000e+01, -3.9850000e+01, -3.9800000e+01, -3.9750000e+01, -3.9700000e+01, -3.9650000e+01, -3.9600000e+01, -3.9550000e+01, -3.9500000e+01, -3.9450000e+01, -3.9400000e+01, -3.9350000e+01, -3.9300000e+01, -3.9250000e+01, -3.9200000e+01, -3.9150000e+01, -3.9100000e+01, -3.9050000e+01, -3.9000000e+01, -3.8950000e+01, -3.8900000e+01, -3.8850000e+01, -3.8800000e+01, -3.8750000e+01, -3.8700000e+01, -3.8650000e+01, -3.8600000e+01, -3.8550000e+01, -3.8500000e+01, -3.8450000e+01, -3.8400000e+01, -3.8350000e+01, -3.8300000e+01, -3.8250000e+01, -3.8200000e+01, -3.8150000e+01, -3.8100000e+01, -3.8050000e+01, -3.8000000e+01, -3.7950000e+01, -3.7900000e+01, -3.7850000e+01, -3.7800000e+01, -3.7750000e+01, -3.7700000e+01, -3.7650000e+01, -3.7600000e+01, -3.7550000e+01, -3.7500000e+01, -3.7450000e+01, -3.7400000e+01, -3.7350000e+01, -3.7300000e+01, -3.7250000e+01, -3.7200000e+01, -3.7150000e+01, -3.7100000e+01, -3.7050000e+01, -3.7000000e+01, -3.6950000e+01, -3.6900000e+01, -3.6850000e+01, -3.6800000e+01, -3.6750000e+01, -3.6700000e+01, -3.6650000e+01, -3.6600000e+01, -3.6550000e+01, -3.6500000e+01, -3.6450000e+01, -3.6400000e+01, -3.6350000e+01, -3.6300000e+01, -3.6250000e+01, -3.6200000e+01, -3.6150000e+01, -3.6100000e+01, -3.6050000e+01, -3.6000000e+01, -3.5950000e+01, -3.5900000e+01, -3.5850000e+01, -3.5800000e+01, -3.5750000e+01, -3.5700000e+01, -3.5650000e+01, -3.5600000e+01, -3.5550000e+01, -3.5500000e+01, -3.5450000e+01, -3.5400000e+01, -3.5350000e+01, -3.5300000e+01, -3.5250000e+01, -3.5200000e+01, -3.5150000e+01, -3.5100000e+01, -3.5050000e+01, -3.5000000e+01, -3.4950000e+01, -3.4900000e+01, -3.4850000e+01, -3.4800000e+01, -3.4750000e+01, -3.4700000e+01, -3.4650000e+01, -3.4600000e+01, -3.4550000e+01, -3.4500000e+01, -3.4450000e+01, -3.4400000e+01, -3.4350000e+01, -3.4300000e+01, -3.4250000e+01, -3.4200000e+01, -3.4150000e+01, -3.4100000e+01, -3.4050000e+01, -3.4000000e+01, -3.3950000e+01, -3.3900000e+01, -3.3850000e+01, -3.3800000e+01, -3.3750000e+01, -3.3700000e+01, -3.3650000e+01, -3.3600000e+01, -3.3550000e+01, -3.3500000e+01, -3.3450000e+01, -3.3400000e+01, -3.3350000e+01, -3.3300000e+01, -3.3250000e+01, -3.3200000e+01, -3.3150000e+01, -3.3100000e+01, -3.3050000e+01, -3.3000000e+01, -3.2950000e+01, -3.2900000e+01, -3.2850000e+01, -3.2800000e+01, -3.2750000e+01, -3.2700000e+01, -3.2650000e+01, -3.2600000e+01, -3.2550000e+01, -3.2500000e+01, -3.2450000e+01, -3.2400000e+01, -3.2350000e+01, -3.2300000e+01, -3.2250000e+01, -3.2200000e+01, -3.2150000e+01, -3.2100000e+01, -3.2050000e+01, -3.2000000e+01, -3.1950000e+01, -3.1900000e+01, -3.1850000e+01, -3.1800000e+01, -3.1750000e+01, -3.1700000e+01, -3.1650000e+01, -3.1600000e+01, -3.1550000e+01, -3.1500000e+01, -3.1450000e+01, -3.1400000e+01, -3.1350000e+01, -3.1300000e+01, -3.1250000e+01, -3.1200000e+01, -3.1150000e+01, -3.1100000e+01, -3.1050000e+01, -3.1000000e+01, -3.0950000e+01, -3.0900000e+01, -3.0850000e+01, -3.0800000e+01, -3.0750000e+01, -3.0700000e+01, -3.0650000e+01, -3.0600000e+01, -3.0550000e+01, -3.0500000e+01, -3.0450000e+01, -3.0400000e+01, -3.0350000e+01, -3.0300000e+01, -3.0250000e+01, -3.0200000e+01, -3.0150000e+01, -3.0100000e+01, -3.0050000e+01, -3.0000000e+01, -2.9950000e+01, -2.9900000e+01, -2.9850000e+01, -2.9800000e+01, -2.9750000e+01, -2.9700000e+01, -2.9650000e+01, -2.9600000e+01, -2.9550000e+01, -2.9500000e+01, -2.9450000e+01, -2.9400000e+01, -2.9350000e+01, -2.9300000e+01, -2.9250000e+01, -2.9200000e+01, -2.9150000e+01, -2.9100000e+01, -2.9050000e+01, -2.9000000e+01, -2.8950000e+01, -2.8900000e+01, -2.8850000e+01, -2.8800000e+01, -2.8750000e+01, -2.8700000e+01, -2.8650000e+01, -2.8600000e+01, -2.8550000e+01, -2.8500000e+01, -2.8450000e+01, -2.8400000e+01, -2.8350000e+01, -2.8300000e+01, -2.8250000e+01, -2.8200000e+01, -2.8150000e+01, -2.8100000e+01, -2.8050000e+01, -2.8000000e+01, -2.7950000e+01, -2.7900000e+01, -2.7850000e+01, -2.7800000e+01, -2.7750000e+01, -2.7700000e+01, -2.7650000e+01, -2.7600000e+01, -2.7550000e+01, -2.7500000e+01, -2.7450000e+01, -2.7400000e+01, -2.7350000e+01, -2.7300000e+01, -2.7250000e+01, -2.7200000e+01, -2.7150000e+01, -2.7100000e+01, -2.7050000e+01, -2.7000000e+01, -2.6950000e+01, -2.6900000e+01, -2.6850000e+01, -2.6800000e+01, -2.6750000e+01, -2.6700000e+01, -2.6650000e+01, -2.6600000e+01, -2.6550000e+01, -2.6500000e+01, -2.6450000e+01, -2.6400000e+01, -2.6350000e+01, -2.6300000e+01, -2.6250000e+01, -2.6200000e+01, -2.6150000e+01, -2.6100000e+01, -2.6050000e+01, -2.6000000e+01, -2.5950000e+01, -2.5900000e+01, -2.5850000e+01, -2.5800000e+01, -2.5750000e+01, -2.5700000e+01, -2.5650000e+01, -2.5600000e+01, -2.5550000e+01, -2.5500000e+01, -2.5450000e+01, -2.5400000e+01, -2.5350000e+01, -2.5300000e+01, -2.5250000e+01, -2.5200000e+01, -2.5150000e+01, -2.5100000e+01, -2.5050000e+01, -2.5000000e+01, -2.4950000e+01, -2.4900000e+01, -2.4850000e+01, -2.4800000e+01, -2.4750000e+01, -2.4700000e+01, -2.4650000e+01, -2.4600000e+01, -2.4550000e+01, -2.4500000e+01, -2.4450000e+01, -2.4400000e+01, -2.4350000e+01, -2.4300000e+01, -2.4250000e+01, -2.4200000e+01, -2.4150000e+01, -2.4100000e+01, -2.4050000e+01, -2.4000000e+01, -2.3950000e+01, -2.3900000e+01, -2.3850000e+01, -2.3800000e+01, -2.3750000e+01, -2.3700000e+01, -2.3650000e+01, -2.3600000e+01, -2.3550000e+01, -2.3500000e+01, -2.3450000e+01, -2.3400000e+01, -2.3350000e+01, -2.3300000e+01, -2.3250000e+01, -2.3200000e+01, -2.3150000e+01, -2.3100000e+01, -2.3050000e+01, -2.3000000e+01, -2.2950000e+01, -2.2900000e+01, -2.2850000e+01, -2.2800000e+01, -2.2750000e+01, -2.2700000e+01, -2.2650000e+01, -2.2600000e+01, -2.2550000e+01, -2.2500000e+01, -2.2450000e+01, -2.2400000e+01, -2.2350000e+01, -2.2300000e+01, -2.2250000e+01, -2.2200000e+01, -2.2150000e+01, -2.2100000e+01, -2.2050000e+01, -2.2000000e+01, -2.1950000e+01, -2.1900000e+01, -2.1850000e+01, -2.1800000e+01, -2.1750000e+01, -2.1700000e+01, -2.1650000e+01, -2.1600000e+01, -2.1550000e+01, -2.1500000e+01, -2.1450000e+01, -2.1400000e+01, -2.1350000e+01, -2.1300000e+01, -2.1250000e+01, -2.1200000e+01, -2.1150000e+01, -2.1100000e+01, -2.1050000e+01, -2.1000000e+01, -2.0950000e+01, -2.0900000e+01, -2.0850000e+01, -2.0800000e+01, -2.0750000e+01, -2.0700000e+01, -2.0650000e+01, -2.0600000e+01, -2.0550000e+01, -2.0500000e+01, -2.0450000e+01, -2.0400000e+01, -2.0350000e+01, -2.0300000e+01, -2.0250000e+01, -2.0200000e+01, -2.0150000e+01, -2.0100000e+01, -2.0050000e+01, -2.0000000e+01, -1.9950000e+01, -1.9900000e+01, -1.9850000e+01, -1.9800000e+01, -1.9750000e+01, -1.9700000e+01, -1.9650000e+01, -1.9600000e+01, -1.9550000e+01, -1.9500000e+01, -1.9450000e+01, -1.9400000e+01, -1.9350000e+01, -1.9300000e+01, -1.9250000e+01, -1.9200000e+01, -1.9150000e+01, -1.9100000e+01, -1.9050000e+01, -1.9000000e+01, -1.8950000e+01, -1.8900000e+01, -1.8850000e+01, -1.8800000e+01, -1.8750000e+01, -1.8700000e+01, -1.8650000e+01, -1.8600000e+01, -1.8550000e+01, -1.8500000e+01, -1.8450000e+01, -1.8400000e+01, -1.8350000e+01, -1.8300000e+01, -1.8250000e+01, -1.8200000e+01, -1.8150000e+01, -1.8100000e+01, -1.8050000e+01, -1.8000000e+01, -1.7950000e+01, -1.7900000e+01, -1.7850000e+01, -1.7800000e+01, -1.7750000e+01, -1.7700000e+01, -1.7650000e+01, -1.7600000e+01, -1.7550000e+01, -1.7500000e+01, -1.7450000e+01, -1.7400000e+01, -1.7350000e+01, -1.7300000e+01, -1.7250000e+01, -1.7200000e+01, -1.7150000e+01, -1.7100000e+01, -1.7050000e+01, -1.7000000e+01, -1.6950000e+01, -1.6900000e+01, -1.6850000e+01, -1.6800000e+01, -1.6750000e+01, -1.6700000e+01, -1.6650000e+01, -1.6600000e+01, -1.6550000e+01, -1.6500000e+01, -1.6450000e+01, -1.6400000e+01, -1.6350000e+01, -1.6300000e+01, -1.6250000e+01, -1.6200000e+01, -1.6150000e+01, -1.6100000e+01, -1.6050000e+01, -1.6000000e+01, -1.5950000e+01, -1.5900000e+01, -1.5850000e+01, -1.5800000e+01, -1.5750000e+01, -1.5700000e+01, -1.5650000e+01, -1.5600000e+01, -1.5550000e+01, -1.5500000e+01, -1.5450000e+01, -1.5400000e+01, -1.5350000e+01, -1.5300000e+01, -1.5250000e+01, -1.5200000e+01, -1.5150000e+01, -1.5100000e+01, -1.5050000e+01, -1.5000000e+01, -1.4950000e+01, -1.4900000e+01, -1.4850000e+01, -1.4800000e+01, -1.4750000e+01, -1.4700000e+01, -1.4650000e+01, -1.4600000e+01, -1.4550000e+01, -1.4500000e+01, -1.4450000e+01, -1.4400000e+01, -1.4350000e+01, -1.4300000e+01, -1.4250000e+01, -1.4200000e+01, -1.4150000e+01, -1.4100000e+01, -1.4050000e+01, -1.4000000e+01, -1.3950000e+01, -1.3900000e+01, -1.3850000e+01, -1.3800000e+01, -1.3750000e+01, -1.3700000e+01, -1.3650000e+01, -1.3600000e+01, -1.3550000e+01, -1.3500000e+01, -1.3450000e+01, -1.3400000e+01, -1.3350000e+01, -1.3300000e+01, -1.3250000e+01, -1.3200000e+01, -1.3150000e+01, -1.3100000e+01, -1.3050000e+01, -1.3000000e+01, -1.2950000e+01, -1.2900000e+01, -1.2850000e+01, -1.2800000e+01, -1.2750000e+01, -1.2700000e+01, -1.2650000e+01, -1.2600000e+01, -1.2550000e+01, -1.2500000e+01, -1.2450000e+01, -1.2400000e+01, -1.2350000e+01, -1.2300000e+01, -1.2250000e+01, -1.2200000e+01, -1.2150000e+01, -1.2100000e+01, -1.2050000e+01, -1.2000000e+01, -1.1950000e+01, -1.1900000e+01, -1.1850000e+01, -1.1800000e+01, -1.1750000e+01, -1.1700000e+01, -1.1650000e+01, -1.1600000e+01, -1.1550000e+01, -1.1500000e+01, -1.1450000e+01, -1.1400000e+01, -1.1350000e+01, -1.1300000e+01, -1.1250000e+01, -1.1200000e+01, -1.1150000e+01, -1.1100000e+01, -1.1050000e+01, -1.1000000e+01, -1.0950000e+01, -1.0900000e+01, -1.0850000e+01, -1.0800000e+01, -1.0750000e+01, -1.0700000e+01, -1.0650000e+01, -1.0600000e+01, -1.0550000e+01, -1.0500000e+01, -1.0450000e+01, -1.0400000e+01, -1.0350000e+01, -1.0300000e+01, -1.0250000e+01, -1.0200000e+01, -1.0150000e+01, -1.0100000e+01, -1.0050000e+01, -1.0000000e+01, -9.9500000e+00, -9.9000000e+00, -9.8500000e+00, -9.8000000e+00, -9.7500000e+00, -9.7000000e+00, -9.6500000e+00, -9.6000000e+00, -9.5500000e+00, -9.5000000e+00, -9.4500000e+00, -9.4000000e+00, -9.3500000e+00, -9.3000000e+00, -9.2500000e+00, -9.2000000e+00, -9.1500000e+00, -9.1000000e+00, -9.0500000e+00, -9.0000000e+00, -8.9500000e+00, -8.9000000e+00, -8.8500000e+00, -8.8000000e+00, -8.7500000e+00, -8.7000000e+00, -8.6500000e+00, -8.6000000e+00, -8.5500000e+00, -8.5000000e+00, -8.4500000e+00, -8.4000000e+00, -8.3500000e+00, -8.3000000e+00, -8.2500000e+00, -8.2000000e+00, -8.1500000e+00, -8.1000000e+00, -8.0500000e+00, -8.0000000e+00, -7.9500000e+00, -7.9000000e+00, -7.8500000e+00, -7.8000000e+00, -7.7500000e+00, -7.7000000e+00, -7.6500000e+00, -7.6000000e+00, -7.5500000e+00, -7.5000000e+00, -7.4500000e+00, -7.4000000e+00, -7.3500000e+00, -7.3000000e+00, -7.2500000e+00, -7.2000000e+00, -7.1500000e+00, -7.1000000e+00, -7.0500000e+00, -7.0000000e+00, -6.9500000e+00, -6.9000000e+00, -6.8500000e+00, -6.8000000e+00, -6.7500000e+00, -6.7000000e+00, -6.6500000e+00, -6.6000000e+00, -6.5500000e+00, -6.5000000e+00, -6.4500000e+00, -6.4000000e+00, -6.3500000e+00, -6.3000000e+00, -6.2500000e+00, -6.2000000e+00, -6.1500000e+00, -6.1000000e+00, -6.0500000e+00, -6.0000000e+00, -5.9500000e+00, -5.9000000e+00, -5.8500000e+00, -5.8000000e+00, -5.7500000e+00, -5.7000000e+00, -5.6500000e+00, -5.6000000e+00, -5.5500000e+00, -5.5000000e+00, -5.4500000e+00, -5.4000000e+00, -5.3500000e+00, -5.3000000e+00, -5.2500000e+00, -5.2000000e+00, -5.1500000e+00, -5.1000000e+00, -5.0500000e+00, -5.0000000e+00, -4.9500000e+00, -4.9000000e+00, -4.8500000e+00, -4.8000000e+00, -4.7500000e+00, -4.7000000e+00, -4.6500000e+00, -4.6000000e+00, -4.5500000e+00, -4.5000000e+00, -4.4500000e+00, -4.4000000e+00, -4.3500000e+00, -4.3000000e+00, -4.2500000e+00, -4.2000000e+00, -4.1500000e+00, -4.1000000e+00, -4.0500000e+00, -4.0000000e+00, -3.9500000e+00, -3.9000000e+00, -3.8500000e+00, -3.8000000e+00, -3.7500000e+00, -3.7000000e+00, -3.6500000e+00, -3.6000000e+00, -3.5500000e+00, -3.5000000e+00, -3.4500000e+00, -3.4000000e+00, -3.3500000e+00, -3.3000000e+00, -3.2500000e+00, -3.2000000e+00, -3.1500000e+00, -3.1000000e+00, -3.0500000e+00, -3.0000000e+00, -2.9500000e+00, -2.9000000e+00, -2.8500000e+00, -2.8000000e+00, -2.7500000e+00, -2.7000000e+00, -2.6500000e+00, -2.6000000e+00, -2.5500000e+00, -2.5000000e+00, -2.4500000e+00, -2.4000000e+00, -2.3500000e+00, -2.3000000e+00, -2.2500000e+00, -2.2000000e+00, -2.1500000e+00, -2.1000000e+00, -2.0500000e+00, -2.0000000e+00, -1.9500000e+00, -1.9000000e+00, -1.8500000e+00, -1.8000000e+00, -1.7500000e+00, -1.7000000e+00, -1.6500000e+00, -1.6000000e+00, -1.5500000e+00, -1.5000000e+00, -1.4500000e+00, -1.4000000e+00, -1.3500000e+00, -1.3000000e+00, -1.2500000e+00, -1.2000000e+00, -1.1500000e+00, -1.1000000e+00, -1.0500000e+00, -1.0000000e+00, -9.5000000e-01, -9.0000000e-01, -8.5000000e-01, -8.0000000e-01, -7.5000000e-01, -7.0000000e-01, -6.5000000e-01, -6.0000000e-01, -5.5000000e-01, -5.0000000e-01, -4.5000000e-01, -4.0000000e-01, -3.5000000e-01, -3.0000000e-01, -2.5000000e-01, -2.0000000e-01, -1.5000000e-01, -1.0000000e-01, -5.0000000e-02, 0.0000000e+00, 5.0000000e-02, 1.0000000e-01, 1.5000000e-01, 2.0000000e-01, 2.5000000e-01, 3.0000000e-01, 3.5000000e-01, 4.0000000e-01, 4.5000000e-01, 5.0000000e-01, 5.5000000e-01, 6.0000000e-01, 6.5000000e-01, 7.0000000e-01, 7.5000000e-01, 8.0000000e-01, 8.5000000e-01, 9.0000000e-01, 9.5000000e-01, 1.0000000e+00, 1.0500000e+00, 1.1000000e+00, 1.1500000e+00, 1.2000000e+00, 1.2500000e+00, 1.3000000e+00, 1.3500000e+00, 1.4000000e+00, 1.4500000e+00, 1.5000000e+00, 1.5500000e+00, 1.6000000e+00, 1.6500000e+00, 1.7000000e+00, 1.7500000e+00, 1.8000000e+00, 1.8500000e+00, 1.9000000e+00, 1.9500000e+00, 2.0000000e+00, 2.0500000e+00, 2.1000000e+00, 2.1500000e+00, 2.2000000e+00, 2.2500000e+00, 2.3000000e+00, 2.3500000e+00, 2.4000000e+00, 2.4500000e+00, 2.5000000e+00, 2.5500000e+00, 2.6000000e+00, 2.6500000e+00, 2.7000000e+00, 2.7500000e+00, 2.8000000e+00, 2.8500000e+00, 2.9000000e+00, 2.9500000e+00, 3.0000000e+00, 3.0500000e+00, 3.1000000e+00, 3.1500000e+00, 3.2000000e+00, 3.2500000e+00, 3.3000000e+00, 3.3500000e+00, 3.4000000e+00, 3.4500000e+00, 3.5000000e+00, 3.5500000e+00, 3.6000000e+00, 3.6500000e+00, 3.7000000e+00, 3.7500000e+00, 3.8000000e+00, 3.8500000e+00, 3.9000000e+00, 3.9500000e+00, 4.0000000e+00, 4.0500000e+00, 4.1000000e+00, 4.1500000e+00, 4.2000000e+00, 4.2500000e+00, 4.3000000e+00, 4.3500000e+00, 4.4000000e+00, 4.4500000e+00, 4.5000000e+00, 4.5500000e+00, 4.6000000e+00, 4.6500000e+00, 4.7000000e+00, 4.7500000e+00, 4.8000000e+00, 4.8500000e+00, 4.9000000e+00, 4.9500000e+00, 5.0000000e+00, 5.0500000e+00, 5.1000000e+00, 5.1500000e+00, 5.2000000e+00, 5.2500000e+00, 5.3000000e+00, 5.3500000e+00, 5.4000000e+00, 5.4500000e+00, 5.5000000e+00, 5.5500000e+00, 5.6000000e+00, 5.6500000e+00, 5.7000000e+00, 5.7500000e+00, 5.8000000e+00, 5.8500000e+00, 5.9000000e+00, 5.9500000e+00, 6.0000000e+00, 6.0500000e+00, 6.1000000e+00, 6.1500000e+00, 6.2000000e+00, 6.2500000e+00, 6.3000000e+00, 6.3500000e+00, 6.4000000e+00, 6.4500000e+00, 6.5000000e+00, 6.5500000e+00, 6.6000000e+00, 6.6500000e+00, 6.7000000e+00, 6.7500000e+00, 6.8000000e+00, 6.8500000e+00, 6.9000000e+00, 6.9500000e+00, 7.0000000e+00, 7.0500000e+00, 7.1000000e+00, 7.1500000e+00, 7.2000000e+00, 7.2500000e+00, 7.3000000e+00, 7.3500000e+00, 7.4000000e+00, 7.4500000e+00, 7.5000000e+00, 7.5500000e+00, 7.6000000e+00, 7.6500000e+00, 7.7000000e+00, 7.7500000e+00, 7.8000000e+00, 7.8500000e+00, 7.9000000e+00, 7.9500000e+00, 8.0000000e+00, 8.0500000e+00, 8.1000000e+00, 8.1500000e+00, 8.2000000e+00, 8.2500000e+00, 8.3000000e+00, 8.3500000e+00, 8.4000000e+00, 8.4500000e+00, 8.5000000e+00, 8.5500000e+00, 8.6000000e+00, 8.6500000e+00, 8.7000000e+00, 8.7500000e+00, 8.8000000e+00, 8.8500000e+00, 8.9000000e+00, 8.9500000e+00, 9.0000000e+00, 9.0500000e+00, 9.1000000e+00, 9.1500000e+00, 9.2000000e+00, 9.2500000e+00, 9.3000000e+00, 9.3500000e+00, 9.4000000e+00, 9.4500000e+00, 9.5000000e+00, 9.5500000e+00, 9.6000000e+00, 9.6500000e+00, 9.7000000e+00, 9.7500000e+00, 9.8000000e+00, 9.8500000e+00, 9.9000000e+00, 9.9500000e+00, 1.0000000e+01, 1.0050000e+01, 1.0100000e+01, 1.0150000e+01, 1.0200000e+01, 1.0250000e+01, 1.0300000e+01, 1.0350000e+01, 1.0400000e+01, 1.0450000e+01, 1.0500000e+01, 1.0550000e+01, 1.0600000e+01, 1.0650000e+01, 1.0700000e+01, 1.0750000e+01, 1.0800000e+01, 1.0850000e+01, 1.0900000e+01, 1.0950000e+01, 1.1000000e+01, 1.1050000e+01, 1.1100000e+01, 1.1150000e+01, 1.1200000e+01, 1.1250000e+01, 1.1300000e+01, 1.1350000e+01, 1.1400000e+01, 1.1450000e+01, 1.1500000e+01, 1.1550000e+01, 1.1600000e+01, 1.1650000e+01, 1.1700000e+01, 1.1750000e+01, 1.1800000e+01, 1.1850000e+01, 1.1900000e+01, 1.1950000e+01, 1.2000000e+01, 1.2050000e+01, 1.2100000e+01, 1.2150000e+01, 1.2200000e+01, 1.2250000e+01, 1.2300000e+01, 1.2350000e+01, 1.2400000e+01, 1.2450000e+01, 1.2500000e+01, 1.2550000e+01, 1.2600000e+01, 1.2650000e+01, 1.2700000e+01, 1.2750000e+01, 1.2800000e+01, 1.2850000e+01, 1.2900000e+01, 1.2950000e+01, 1.3000000e+01, 1.3050000e+01, 1.3100000e+01, 1.3150000e+01, 1.3200000e+01, 1.3250000e+01, 1.3300000e+01, 1.3350000e+01, 1.3400000e+01, 1.3450000e+01, 1.3500000e+01, 1.3550000e+01, 1.3600000e+01, 1.3650000e+01, 1.3700000e+01, 1.3750000e+01, 1.3800000e+01, 1.3850000e+01, 1.3900000e+01, 1.3950000e+01, 1.4000000e+01, 1.4050000e+01, 1.4100000e+01, 1.4150000e+01, 1.4200000e+01, 1.4250000e+01, 1.4300000e+01, 1.4350000e+01, 1.4400000e+01, 1.4450000e+01, 1.4500000e+01, 1.4550000e+01, 1.4600000e+01, 1.4650000e+01, 1.4700000e+01, 1.4750000e+01, 1.4800000e+01, 1.4850000e+01, 1.4900000e+01, 1.4950000e+01, 1.5000000e+01, 1.5050000e+01, 1.5100000e+01, 1.5150000e+01, 1.5200000e+01, 1.5250000e+01, 1.5300000e+01, 1.5350000e+01, 1.5400000e+01, 1.5450000e+01, 1.5500000e+01, 1.5550000e+01, 1.5600000e+01, 1.5650000e+01, 1.5700000e+01, 1.5750000e+01, 1.5800000e+01, 1.5850000e+01, 1.5900000e+01, 1.5950000e+01, 1.6000000e+01, 1.6050000e+01, 1.6100000e+01, 1.6150000e+01, 1.6200000e+01, 1.6250000e+01, 1.6300000e+01, 1.6350000e+01, 1.6400000e+01, 1.6450000e+01, 1.6500000e+01, 1.6550000e+01, 1.6600000e+01, 1.6650000e+01, 1.6700000e+01, 1.6750000e+01, 1.6800000e+01, 1.6850000e+01, 1.6900000e+01, 1.6950000e+01, 1.7000000e+01, 1.7050000e+01, 1.7100000e+01, 1.7150000e+01, 1.7200000e+01, 1.7250000e+01, 1.7300000e+01, 1.7350000e+01, 1.7400000e+01, 1.7450000e+01, 1.7500000e+01, 1.7550000e+01, 1.7600000e+01, 1.7650000e+01, 1.7700000e+01, 1.7750000e+01, 1.7800000e+01, 1.7850000e+01, 1.7900000e+01, 1.7950000e+01, 1.8000000e+01, 1.8050000e+01, 1.8100000e+01, 1.8150000e+01, 1.8200000e+01, 1.8250000e+01, 1.8300000e+01, 1.8350000e+01, 1.8400000e+01, 1.8450000e+01, 1.8500000e+01, 1.8550000e+01, 1.8600000e+01, 1.8650000e+01, 1.8700000e+01, 1.8750000e+01, 1.8800000e+01, 1.8850000e+01, 1.8900000e+01, 1.8950000e+01, 1.9000000e+01, 1.9050000e+01, 1.9100000e+01, 1.9150000e+01, 1.9200000e+01, 1.9250000e+01, 1.9300000e+01, 1.9350000e+01, 1.9400000e+01, 1.9450000e+01, 1.9500000e+01, 1.9550000e+01, 1.9600000e+01, 1.9650000e+01, 1.9700000e+01, 1.9750000e+01, 1.9800000e+01, 1.9850000e+01, 1.9900000e+01, 1.9950000e+01, 2.0000000e+01, 2.0050000e+01, 2.0100000e+01, 2.0150000e+01, 2.0200000e+01, 2.0250000e+01, 2.0300000e+01, 2.0350000e+01, 2.0400000e+01, 2.0450000e+01, 2.0500000e+01, 2.0550000e+01, 2.0600000e+01, 2.0650000e+01, 2.0700000e+01, 2.0750000e+01, 2.0800000e+01, 2.0850000e+01, 2.0900000e+01, 2.0950000e+01, 2.1000000e+01, 2.1050000e+01, 2.1100000e+01, 2.1150000e+01, 2.1200000e+01, 2.1250000e+01, 2.1300000e+01, 2.1350000e+01, 2.1400000e+01, 2.1450000e+01, 2.1500000e+01, 2.1550000e+01, 2.1600000e+01, 2.1650000e+01, 2.1700000e+01, 2.1750000e+01, 2.1800000e+01, 2.1850000e+01, 2.1900000e+01, 2.1950000e+01, 2.2000000e+01, 2.2050000e+01, 2.2100000e+01, 2.2150000e+01, 2.2200000e+01, 2.2250000e+01, 2.2300000e+01, 2.2350000e+01, 2.2400000e+01, 2.2450000e+01, 2.2500000e+01, 2.2550000e+01, 2.2600000e+01, 2.2650000e+01, 2.2700000e+01, 2.2750000e+01, 2.2800000e+01, 2.2850000e+01, 2.2900000e+01, 2.2950000e+01, 2.3000000e+01, 2.3050000e+01, 2.3100000e+01, 2.3150000e+01, 2.3200000e+01, 2.3250000e+01, 2.3300000e+01, 2.3350000e+01, 2.3400000e+01, 2.3450000e+01, 2.3500000e+01, 2.3550000e+01, 2.3600000e+01, 2.3650000e+01, 2.3700000e+01, 2.3750000e+01, 2.3800000e+01, 2.3850000e+01, 2.3900000e+01, 2.3950000e+01, 2.4000000e+01, 2.4050000e+01, 2.4100000e+01, 2.4150000e+01, 2.4200000e+01, 2.4250000e+01, 2.4300000e+01, 2.4350000e+01, 2.4400000e+01, 2.4450000e+01, 2.4500000e+01, 2.4550000e+01, 2.4600000e+01, 2.4650000e+01, 2.4700000e+01, 2.4750000e+01, 2.4800000e+01, 2.4850000e+01, 2.4900000e+01, 2.4950000e+01, 2.5000000e+01, 2.5050000e+01, 2.5100000e+01, 2.5150000e+01, 2.5200000e+01, 2.5250000e+01, 2.5300000e+01, 2.5350000e+01, 2.5400000e+01, 2.5450000e+01, 2.5500000e+01, 2.5550000e+01, 2.5600000e+01, 2.5650000e+01, 2.5700000e+01, 2.5750000e+01, 2.5800000e+01, 2.5850000e+01, 2.5900000e+01, 2.5950000e+01, 2.6000000e+01, 2.6050000e+01, 2.6100000e+01, 2.6150000e+01, 2.6200000e+01, 2.6250000e+01, 2.6300000e+01, 2.6350000e+01, 2.6400000e+01, 2.6450000e+01, 2.6500000e+01, 2.6550000e+01, 2.6600000e+01, 2.6650000e+01, 2.6700000e+01, 2.6750000e+01, 2.6800000e+01, 2.6850000e+01, 2.6900000e+01, 2.6950000e+01, 2.7000000e+01, 2.7050000e+01, 2.7100000e+01, 2.7150000e+01, 2.7200000e+01, 2.7250000e+01, 2.7300000e+01, 2.7350000e+01, 2.7400000e+01, 2.7450000e+01, 2.7500000e+01, 2.7550000e+01, 2.7600000e+01, 2.7650000e+01, 2.7700000e+01, 2.7750000e+01, 2.7800000e+01, 2.7850000e+01, 2.7900000e+01, 2.7950000e+01, 2.8000000e+01, 2.8050000e+01, 2.8100000e+01, 2.8150000e+01, 2.8200000e+01, 2.8250000e+01, 2.8300000e+01, 2.8350000e+01, 2.8400000e+01, 2.8450000e+01, 2.8500000e+01, 2.8550000e+01, 2.8600000e+01, 2.8650000e+01, 2.8700000e+01, 2.8750000e+01, 2.8800000e+01, 2.8850000e+01, 2.8900000e+01, 2.8950000e+01, 2.9000000e+01, 2.9050000e+01, 2.9100000e+01, 2.9150000e+01, 2.9200000e+01, 2.9250000e+01, 2.9300000e+01, 2.9350000e+01, 2.9400000e+01, 2.9450000e+01, 2.9500000e+01, 2.9550000e+01, 2.9600000e+01, 2.9650000e+01, 2.9700000e+01, 2.9750000e+01, 2.9800000e+01, 2.9850000e+01, 2.9900000e+01, 2.9950000e+01, 3.0000000e+01, 3.0050000e+01, 3.0100000e+01, 3.0150000e+01, 3.0200000e+01, 3.0250000e+01, 3.0300000e+01, 3.0350000e+01, 3.0400000e+01, 3.0450000e+01, 3.0500000e+01, 3.0550000e+01, 3.0600000e+01, 3.0650000e+01, 3.0700000e+01, 3.0750000e+01, 3.0800000e+01, 3.0850000e+01, 3.0900000e+01, 3.0950000e+01, 3.1000000e+01, 3.1050000e+01, 3.1100000e+01, 3.1150000e+01, 3.1200000e+01, 3.1250000e+01, 3.1300000e+01, 3.1350000e+01, 3.1400000e+01, 3.1450000e+01, 3.1500000e+01, 3.1550000e+01, 3.1600000e+01, 3.1650000e+01, 3.1700000e+01, 3.1750000e+01, 3.1800000e+01, 3.1850000e+01, 3.1900000e+01, 3.1950000e+01, 3.2000000e+01, 3.2050000e+01, 3.2100000e+01, 3.2150000e+01, 3.2200000e+01, 3.2250000e+01, 3.2300000e+01, 3.2350000e+01, 3.2400000e+01, 3.2450000e+01, 3.2500000e+01, 3.2550000e+01, 3.2600000e+01, 3.2650000e+01, 3.2700000e+01, 3.2750000e+01, 3.2800000e+01, 3.2850000e+01, 3.2900000e+01, 3.2950000e+01, 3.3000000e+01, 3.3050000e+01, 3.3100000e+01, 3.3150000e+01, 3.3200000e+01, 3.3250000e+01, 3.3300000e+01, 3.3350000e+01, 3.3400000e+01, 3.3450000e+01, 3.3500000e+01, 3.3550000e+01, 3.3600000e+01, 3.3650000e+01, 3.3700000e+01, 3.3750000e+01, 3.3800000e+01, 3.3850000e+01, 3.3900000e+01, 3.3950000e+01, 3.4000000e+01, 3.4050000e+01, 3.4100000e+01, 3.4150000e+01, 3.4200000e+01, 3.4250000e+01, 3.4300000e+01, 3.4350000e+01, 3.4400000e+01, 3.4450000e+01, 3.4500000e+01, 3.4550000e+01, 3.4600000e+01, 3.4650000e+01, 3.4700000e+01, 3.4750000e+01, 3.4800000e+01, 3.4850000e+01, 3.4900000e+01, 3.4950000e+01, 3.5000000e+01, 3.5050000e+01, 3.5100000e+01, 3.5150000e+01, 3.5200000e+01, 3.5250000e+01, 3.5300000e+01, 3.5350000e+01, 3.5400000e+01, 3.5450000e+01, 3.5500000e+01, 3.5550000e+01, 3.5600000e+01, 3.5650000e+01, 3.5700000e+01, 3.5750000e+01, 3.5800000e+01, 3.5850000e+01, 3.5900000e+01, 3.5950000e+01, 3.6000000e+01, 3.6050000e+01, 3.6100000e+01, 3.6150000e+01, 3.6200000e+01, 3.6250000e+01, 3.6300000e+01, 3.6350000e+01, 3.6400000e+01, 3.6450000e+01, 3.6500000e+01, 3.6550000e+01, 3.6600000e+01, 3.6650000e+01, 3.6700000e+01, 3.6750000e+01, 3.6800000e+01, 3.6850000e+01, 3.6900000e+01, 3.6950000e+01, 3.7000000e+01, 3.7050000e+01, 3.7100000e+01, 3.7150000e+01, 3.7200000e+01, 3.7250000e+01, 3.7300000e+01, 3.7350000e+01, 3.7400000e+01, 3.7450000e+01, 3.7500000e+01, 3.7550000e+01, 3.7600000e+01, 3.7650000e+01, 3.7700000e+01, 3.7750000e+01, 3.7800000e+01, 3.7850000e+01, 3.7900000e+01, 3.7950000e+01, 3.8000000e+01, 3.8050000e+01, 3.8100000e+01, 3.8150000e+01, 3.8200000e+01, 3.8250000e+01, 3.8300000e+01, 3.8350000e+01, 3.8400000e+01, 3.8450000e+01, 3.8500000e+01, 3.8550000e+01, 3.8600000e+01, 3.8650000e+01, 3.8700000e+01, 3.8750000e+01, 3.8800000e+01, 3.8850000e+01, 3.8900000e+01, 3.8950000e+01, 3.9000000e+01, 3.9050000e+01, 3.9100000e+01, 3.9150000e+01, 3.9200000e+01, 3.9250000e+01, 3.9300000e+01, 3.9350000e+01, 3.9400000e+01, 3.9450000e+01, 3.9500000e+01, 3.9550000e+01, 3.9600000e+01, 3.9650000e+01, 3.9700000e+01, 3.9750000e+01, 3.9800000e+01, 3.9850000e+01, 3.9900000e+01, 3.9950000e+01, 4.0000000e+01, 4.0050000e+01, 4.0100000e+01, 4.0150000e+01, 4.0200000e+01, 4.0250000e+01, 4.0300000e+01, 4.0350000e+01, 4.0400000e+01, 4.0450000e+01, 4.0500000e+01, 4.0550000e+01, 4.0600000e+01, 4.0650000e+01, 4.0700000e+01, 4.0750000e+01, 4.0800000e+01, 4.0850000e+01, 4.0900000e+01, 4.0950000e+01, 4.1000000e+01, 4.1050000e+01, 4.1100000e+01, 4.1150000e+01, 4.1200000e+01, 4.1250000e+01, 4.1300000e+01, 4.1350000e+01, 4.1400000e+01, 4.1450000e+01, 4.1500000e+01, 4.1550000e+01, 4.1600000e+01, 4.1650000e+01, 4.1700000e+01, 4.1750000e+01, 4.1800000e+01, 4.1850000e+01, 4.1900000e+01, 4.1950000e+01, 4.2000000e+01, 4.2050000e+01, 4.2100000e+01, 4.2150000e+01, 4.2200000e+01, 4.2250000e+01, 4.2300000e+01, 4.2350000e+01, 4.2400000e+01, 4.2450000e+01, 4.2500000e+01, 4.2550000e+01, 4.2600000e+01, 4.2650000e+01, 4.2700000e+01, 4.2750000e+01, 4.2800000e+01, 4.2850000e+01, 4.2900000e+01, 4.2950000e+01, 4.3000000e+01, 4.3050000e+01, 4.3100000e+01, 4.3150000e+01, 4.3200000e+01, 4.3250000e+01, 4.3300000e+01, 4.3350000e+01, 4.3400000e+01, 4.3450000e+01, 4.3500000e+01, 4.3550000e+01, 4.3600000e+01, 4.3650000e+01, 4.3700000e+01, 4.3750000e+01, 4.3800000e+01, 4.3850000e+01},
- // step = { 0.0000000e+00, 1.7162587e-09, 3.4601171e-09, 5.2316998e-09, 7.0310819e-09, 8.8583102e-09, 1.0713431e-08, 1.2596515e-08, 1.4507677e-08, 1.6447083e-08, 1.8414945e-08, 2.0411505e-08, 2.2437007e-08, 2.4491675e-08, 2.6575690e-08, 2.8689175e-08, 3.0832203e-08, 3.3004804e-08, 3.5206993e-08, 3.7438790e-08, 3.9700249e-08, 4.1991465e-08, 4.4312582e-08, 4.6663782e-08, 4.9045262e-08, 5.1457207e-08, 5.3899774e-08, 5.6373070e-08, 5.8877150e-08, 6.1412031e-08, 6.3977704e-08, 6.6574167e-08, 6.9201445e-08, 7.1859611e-08, 7.4548792e-08, 7.7269162e-08, 8.0020926e-08, 8.2804297e-08, 8.5619472e-08, 8.8466606e-08, 9.1345807e-08, 9.4257138e-08, 9.7200630e-08, 1.0017631e-07, 1.0318421e-07, 1.0622444e-07, 1.0929713e-07, 1.1240249e-07, 1.1554078e-07, 1.1871229e-07, 1.2191728e-07, 1.2515602e-07, 1.2842872e-07, 1.3173554e-07, 1.3507657e-07, 1.3845189e-07, 1.4186157e-07, 1.4530572e-07, 1.4878447e-07, 1.5229802e-07, 1.5584665e-07, 1.5943065e-07, 1.6305033e-07, 1.6670602e-07, 1.7039797e-07, 1.7412639e-07, 1.7789146e-07, 1.8169330e-07, 1.8553199e-07, 1.8940765e-07, 1.9332041e-07, 1.9727046e-07, 2.0125806e-07, 2.0528349e-07, 2.0934709e-07, 2.1344920e-07, 2.1759014e-07, 2.2177019e-07, 2.2598959e-07, 2.3024854e-07, 2.3454721e-07, 2.3888578e-07, 2.4326445e-07, 2.4768345e-07, 2.5214309e-07, 2.5664371e-07, 2.6118571e-07, 2.6576950e-07, 2.7039549e-07, 2.7506404e-07, 2.7977547e-07, 2.8453004e-07, 2.8932797e-07, 2.9416948e-07, 2.9905479e-07, 3.0398415e-07, 3.0895788e-07, 3.1397636e-07, 3.1904004e-07, 3.2414940e-07, 3.2930492e-07, 3.3450707e-07, 3.3975627e-07, 3.4505286e-07, 3.5039715e-07, 3.5578941e-07, 3.6122988e-07, 3.6671883e-07, 3.7225657e-07, 3.7784347e-07, 3.8347996e-07, 3.8916652e-07, 3.9490366e-07, 4.0069188e-07, 4.0653164e-07, 4.1242337e-07, 4.1836742e-07, 4.2436410e-07, 4.3041368e-07, 4.3651641e-07, 4.4267259e-07, 4.4888254e-07, 4.5514664e-07, 4.6146534e-07, 4.6783911e-07, 4.7426844e-07, 4.8075384e-07, 4.8729573e-07, 4.9389452e-07, 5.0055056e-07, 5.0726415e-07, 5.1403560e-07, 5.2086522e-07, 5.2775336e-07, 5.3470043e-07, 5.4170688e-07, 5.4877325e-07, 5.5590006e-07, 5.6308784e-07, 5.7033710e-07, 5.7764826e-07, 5.8502171e-07, 5.9245778e-07, 5.9995678e-07, 6.0751900e-07, 6.1514478e-07, 6.2283450e-07, 6.3058862e-07, 6.3840765e-07, 6.4629212e-07, 6.5424259e-07, 6.6225960e-07, 6.7034363e-07, 6.7849508e-07, 6.8671428e-07, 6.9500153e-07, 7.0335706e-07, 7.1178111e-07, 7.2027396e-07, 7.2883595e-07, 7.3746747e-07, 7.4616899e-07, 7.5494100e-07, 7.6378402e-07, 7.7269855e-07, 7.8168503e-07, 7.9074386e-07, 7.9987535e-07, 8.0907979e-07, 8.1835744e-07, 8.2770858e-07, 8.3713352e-07, 8.4663265e-07, 8.5620638e-07, 8.6585521e-07, 8.7557963e-07, 8.8538011e-07, 8.9525712e-07, 9.0521104e-07, 9.1524220e-07, 9.2535090e-07, 9.3553739e-07, 9.4580193e-07, 9.5614483e-07, 9.6656642e-07, 9.7706713e-07, 9.8764741e-07, 9.9830775e-07, 1.0090486e-06, 1.0198705e-06, 1.0307739e-06, 1.0417590e-06, 1.0528261e-06, 1.0639756e-06, 1.0752077e-06, 1.0865227e-06, 1.0979208e-06, 1.1094026e-06, 1.1209684e-06, 1.1326190e-06, 1.1443549e-06, 1.1561767e-06, 1.1680849e-06, 1.1800801e-06, 1.1921627e-06, 1.2043330e-06, 1.2165913e-06, 1.2289381e-06, 1.2413735e-06, 1.2538980e-06, 1.2665122e-06, 1.2792164e-06, 1.2920115e-06, 1.3048979e-06, 1.3178764e-06, 1.3309474e-06, 1.3441117e-06, 1.3573695e-06, 1.3707213e-06, 1.3841676e-06, 1.3977086e-06, 1.4113449e-06, 1.4250767e-06, 1.4389048e-06, 1.4528296e-06, 1.4668518e-06, 1.4809720e-06, 1.4951906e-06, 1.5095083e-06, 1.5239256e-06, 1.5384427e-06, 1.5530601e-06, 1.5677782e-06, 1.5825974e-06, 1.5975181e-06, 1.6125409e-06, 1.6276664e-06, 1.6428952e-06, 1.6582281e-06, 1.6736655e-06, 1.6892082e-06, 1.7048566e-06, 1.7206112e-06, 1.7364723e-06, 1.7524403e-06, 1.7685156e-06, 1.7846986e-06, 1.8009899e-06, 1.8173900e-06, 1.8338996e-06, 1.8505196e-06, 1.8672506e-06, 1.8840935e-06, 1.9010490e-06, 1.9181176e-06, 1.9353000e-06, 1.9525966e-06, 1.9700080e-06, 1.9875347e-06, 2.0051772e-06, 2.0229362e-06, 2.0408124e-06, 2.0588068e-06, 2.0769201e-06, 2.0951532e-06, 2.1135069e-06, 2.1319820e-06, 2.1505792e-06, 2.1692992e-06, 2.1881424e-06, 2.2071095e-06, 2.2262010e-06, 2.2454176e-06, 2.2647598e-06, 2.2842285e-06, 2.3038243e-06, 2.3235480e-06, 2.3434004e-06, 2.3633820e-06, 2.3834934e-06, 2.4037352e-06, 2.4241078e-06, 2.4446116e-06, 2.4652471e-06, 2.4860147e-06, 2.5069152e-06, 2.5279491e-06, 2.5491173e-06, 2.5704205e-06, 2.5918593e-06, 2.6134346e-06, 2.6351468e-06, 2.6569965e-06, 2.6789841e-06, 2.7011099e-06, 2.7233743e-06, 2.7457778e-06, 2.7683207e-06, 2.7910036e-06, 2.8138273e-06, 2.8367923e-06, 2.8598996e-06, 2.8831498e-06, 2.9065436e-06, 2.9300816e-06, 2.9537642e-06, 2.9775919e-06, 3.0015650e-06, 3.0256840e-06, 3.0499491e-06, 3.0743609e-06, 3.0989199e-06, 3.1236267e-06, 3.1484822e-06, 3.1734869e-06, 3.1986417e-06, 3.2239472e-06, 3.2494039e-06, 3.2750125e-06, 3.3007733e-06, 3.3266870e-06, 3.3527540e-06, 3.3789749e-06, 3.4053505e-06, 3.4318816e-06, 3.4585690e-06, 3.4854136e-06, 3.5124164e-06, 3.5395782e-06, 3.5668997e-06, 3.5943818e-06, 3.6220250e-06, 3.6498301e-06, 3.6777978e-06, 3.7059288e-06, 3.7342240e-06, 3.7626844e-06, 3.7913111e-06, 3.8201052e-06, 3.8490680e-06, 3.8782004e-06, 3.9075036e-06, 3.9369784e-06, 3.9666259e-06, 3.9964467e-06, 4.0264418e-06, 4.0566119e-06, 4.0869580e-06, 4.1174813e-06, 4.1481828e-06, 4.1790640e-06, 4.2101262e-06, 4.2413708e-06, 4.2727992e-06, 4.3044128e-06, 4.3362127e-06, 4.3681999e-06, 4.4003757e-06, 4.4327409e-06, 4.4652967e-06, 4.4980442e-06, 4.5309847e-06, 4.5641196e-06, 4.5974502e-06, 4.6309781e-06, 4.6647046e-06, 4.6986312e-06, 4.7327592e-06, 4.7670897e-06, 4.8016240e-06, 4.8363632e-06, 4.8713085e-06, 4.9064611e-06, 4.9418224e-06, 4.9773938e-06, 5.0131768e-06, 5.0491729e-06, 5.0853837e-06, 5.1218107e-06, 5.1584552e-06, 5.1953186e-06, 5.2324019e-06, 5.2697063e-06, 5.3072329e-06, 5.3449829e-06, 5.3829574e-06, 5.4211577e-06, 5.4595853e-06, 5.4982416e-06, 5.5371281e-06, 5.5762461e-06, 5.6155969e-06, 5.6551817e-06, 5.6950014e-06, 5.7350568e-06, 5.7753488e-06, 5.8158781e-06, 5.8566455e-06, 5.8976520e-06, 5.9388985e-06, 5.9803863e-06, 6.0221165e-06, 6.0640903e-06, 6.1063089e-06, 6.1487732e-06, 6.1914843e-06, 6.2344429e-06, 6.2776498e-06, 6.3211056e-06, 6.3648112e-06, 6.4087674e-06, 6.4529751e-06, 6.4974354e-06, 6.5421496e-06, 6.5871189e-06, 6.6323445e-06, 6.6778279e-06, 6.7235701e-06, 6.7695722e-06, 6.8158352e-06, 6.8623602e-06, 6.9091479e-06, 6.9561995e-06, 7.0035161e-06, 7.0510989e-06, 7.0989492e-06, 7.1470685e-06, 7.1954580e-06, 7.2441191e-06, 7.2930531e-06, 7.3422610e-06, 7.3917438e-06, 7.4415023e-06, 7.4915374e-06, 7.5418500e-06, 7.5924412e-06, 7.6433120e-06, 7.6944639e-06, 7.7458982e-06, 7.7976165e-06, 7.8496201e-06, 7.9019106e-06, 7.9544890e-06, 8.0073567e-06, 8.0605146e-06, 8.1139637e-06, 8.1677050e-06, 8.2217396e-06, 8.2760686e-06, 8.3306936e-06, 8.3856159e-06, 8.4408373e-06, 8.4963594e-06, 8.5521840e-06, 8.6083126e-06, 8.6647468e-06, 8.7214879e-06, 8.7785371e-06, 8.8358957e-06, 8.8935650e-06, 8.9515463e-06, 9.0098411e-06, 9.0684511e-06, 9.1273783e-06, 9.1866248e-06, 9.2461925e-06, 9.3060836e-06, 9.3663001e-06, 9.4268440e-06, 9.4877170e-06, 9.5489209e-06, 9.6104576e-06, 9.6723289e-06, 9.7345368e-06, 9.7970835e-06, 9.8599714e-06, 9.9232029e-06, 9.9867806e-06, 1.0050707e-05, 1.0114984e-05, 1.0179615e-05, 1.0244601e-05, 1.0309945e-05, 1.0375649e-05, 1.0441715e-05, 1.0508145e-05, 1.0574942e-05, 1.0642108e-05, 1.0709646e-05, 1.0777560e-05, 1.0845851e-05, 1.0914523e-05, 1.0983578e-05, 1.1053019e-05, 1.1122848e-05, 1.1193067e-05, 1.1263679e-05, 1.1334685e-05, 1.1406088e-05, 1.1477890e-05, 1.1550095e-05, 1.1622705e-05, 1.1695723e-05, 1.1769153e-05, 1.1842997e-05, 1.1917258e-05, 1.1991938e-05, 1.2067041e-05, 1.2142567e-05, 1.2218519e-05, 1.2294900e-05, 1.2371711e-05, 1.2448955e-05, 1.2526634e-05, 1.2604751e-05, 1.2683310e-05, 1.2762311e-05, 1.2841758e-05, 1.2921653e-05, 1.3001998e-05, 1.3082795e-05, 1.3164046e-05, 1.3245752e-05, 1.3327916e-05, 1.3410539e-05, 1.3493624e-05, 1.3577173e-05, 1.3661188e-05, 1.3745672e-05, 1.3830628e-05, 1.3916057e-05, 1.4001963e-05, 1.4088346e-05, 1.4175210e-05, 1.4262557e-05, 1.4350388e-05, 1.4438707e-05, 1.4527517e-05, 1.4616820e-05, 1.4706621e-05, 1.4796922e-05, 1.4887727e-05, 1.4979039e-05, 1.5070861e-05, 1.5163194e-05, 1.5256043e-05, 1.5349408e-05, 1.5443292e-05, 1.5537698e-05, 1.5632629e-05, 1.5728087e-05, 1.5824077e-05, 1.5920601e-05, 1.6017664e-05, 1.6115268e-05, 1.6213418e-05, 1.6312116e-05, 1.6411365e-05, 1.6511167e-05, 1.6611526e-05, 1.6712444e-05, 1.6813924e-05, 1.6915968e-05, 1.7018580e-05, 1.7121764e-05, 1.7225523e-05, 1.7329861e-05, 1.7434782e-05, 1.7540290e-05, 1.7646387e-05, 1.7753078e-05, 1.7860366e-05, 1.7968254e-05, 1.8076746e-05, 1.8185846e-05, 1.8295557e-05, 1.8405885e-05, 1.8516833e-05, 1.8628406e-05, 1.8740608e-05, 1.8853443e-05, 1.8966916e-05, 1.9081029e-05, 1.9195788e-05, 1.9311194e-05, 1.9427253e-05, 1.9543969e-05, 1.9661346e-05, 1.9779389e-05, 1.9898104e-05, 2.0017496e-05, 2.0137569e-05, 2.0258329e-05, 2.0379781e-05, 2.0501927e-05, 2.0624773e-05, 2.0748321e-05, 2.0872576e-05, 2.0997540e-05, 2.1123219e-05, 2.1249615e-05, 2.1376735e-05, 2.1504583e-05, 2.1633164e-05, 2.1762484e-05, 2.1892547e-05, 2.2023357e-05, 2.2154920e-05, 2.2287237e-05, 2.2420313e-05, 2.2554151e-05, 2.2688753e-05, 2.2824124e-05, 2.2960266e-05, 2.3097184e-05, 2.3234882e-05, 2.3373365e-05, 2.3512636e-05, 2.3652701e-05, 2.3793563e-05, 2.3935227e-05, 2.4077698e-05, 2.4220979e-05, 2.4365076e-05, 2.4509995e-05, 2.4655740e-05, 2.4802318e-05, 2.4949735e-05, 2.5097997e-05, 2.5247111e-05, 2.5397081e-05, 2.5547913e-05, 2.5699613e-05, 2.5852186e-05, 2.6005636e-05, 2.6159970e-05, 2.6315192e-05, 2.6471310e-05, 2.6628330e-05, 2.6786261e-05, 2.6945109e-05, 2.7104883e-05, 2.7265590e-05, 2.7427237e-05, 2.7589832e-05, 2.7753380e-05, 2.7917887e-05, 2.8083358e-05, 2.8249800e-05, 2.8417218e-05, 2.8585621e-05, 2.8755015e-05, 2.8925410e-05, 2.9096815e-05, 2.9269239e-05, 2.9442692e-05, 2.9617182e-05, 2.9792720e-05, 2.9969313e-05, 3.0146969e-05, 3.0325697e-05, 3.0505504e-05, 3.0686399e-05, 3.0868389e-05, 3.1051485e-05, 3.1235694e-05, 3.1421025e-05, 3.1607487e-05, 3.1795089e-05, 3.1983839e-05, 3.2173745e-05, 3.2364813e-05, 3.2557053e-05, 3.2750471e-05, 3.2945077e-05, 3.3140877e-05, 3.3337880e-05, 3.3536095e-05, 3.3735531e-05, 3.3936194e-05, 3.4138093e-05, 3.4341233e-05, 3.4545621e-05, 3.4751263e-05, 3.4958162e-05, 3.5166326e-05, 3.5375761e-05, 3.5586475e-05, 3.5798477e-05, 3.6011779e-05, 3.6226391e-05, 3.6442328e-05, 3.6659599e-05, 3.6878218e-05, 3.7098194e-05, 3.7319538e-05, 3.7542260e-05, 3.7766367e-05, 3.7991869e-05, 3.8218776e-05, 3.8447097e-05, 3.8676844e-05, 3.8908030e-05, 3.9140668e-05, 3.9374773e-05, 3.9610359e-05, 3.9847441e-05, 4.0086034e-05, 4.0326151e-05, 4.0567809e-05, 4.0811020e-05, 4.1055798e-05, 4.1302160e-05, 4.1550119e-05, 4.1799691e-05, 4.2050893e-05, 4.2303739e-05, 4.2558247e-05, 4.2814431e-05, 4.3072308e-05, 4.3331890e-05, 4.3593193e-05, 4.3856230e-05, 4.4121015e-05, 4.4387564e-05, 4.4655892e-05, 4.4926017e-05, 4.5197955e-05, 4.5471723e-05, 4.5747337e-05, 4.6024811e-05, 4.6304157e-05, 4.6585387e-05, 4.6868509e-05, 4.7153534e-05, 4.7440470e-05, 4.7729328e-05, 4.8020121e-05, 4.8312865e-05, 4.8607578e-05, 4.8904281e-05, 4.9202994e-05, 4.9503740e-05, 4.9806544e-05, 5.0111425e-05, 5.0418407e-05, 5.0727509e-05, 5.1038750e-05, 5.1352148e-05, 5.1667724e-05, 5.1985496e-05, 5.2305488e-05, 5.2627723e-05, 5.2952228e-05, 5.3279031e-05, 5.3608160e-05, 5.3939646e-05, 5.4273518e-05, 5.4609803e-05, 5.4948529e-05, 5.5289722e-05, 5.5633410e-05, 5.5979619e-05, 5.6328375e-05, 5.6679706e-05, 5.7033640e-05, 5.7390201e-05, 5.7749415e-05, 5.8111304e-05, 5.8475887e-05, 5.8843185e-05, 5.9213216e-05, 5.9586000e-05, 5.9961563e-05, 6.0339933e-05, 6.0721140e-05, 6.1105222e-05, 6.1492218e-05, 6.1882171e-05, 6.2275126e-05, 6.2671126e-05, 6.3070214e-05, 6.3472432e-05, 6.3877816e-05, 6.4286405e-05, 6.4698234e-05, 6.5113341e-05, 6.5531765e-05, 6.5953549e-05, 6.6378744e-05, 6.6807403e-05, 6.7239584e-05, 6.7675346e-05, 6.8114751e-05, 6.8557856e-05, 6.9004713e-05, 6.9455370e-05, 6.9909871e-05, 7.0368256e-05, 7.0830565e-05, 7.1296844e-05, 7.1767139e-05, 7.2241504e-05, 7.2719997e-05, 7.3202681e-05, 7.3689620e-05, 7.4180881e-05, 7.4676537e-05, 7.5176658e-05, 7.5681321e-05, 7.6190608e-05, 7.6704605e-05, 7.7223404e-05, 7.7747103e-05, 7.8275802e-05, 7.8809604e-05, 7.9348610e-05, 7.9892916e-05, 8.0442614e-05, 8.0997791e-05, 8.1558533e-05, 8.2124927e-05, 8.2697059e-05, 8.3275018e-05, 8.3858903e-05, 8.4448827e-05, 8.5044920e-05, 8.5647333e-05, 8.6256237e-05, 8.6871817e-05, 8.7494266e-05, 8.8123772e-05, 8.8760513e-05, 8.9404654e-05, 9.0056343e-05, 9.0715731e-05, 9.1382973e-05, 9.2058241e-05, 9.2741736e-05, 9.3433690e-05, 9.4134371e-05, 9.4844080e-05, 9.5563141e-05, 9.6291884e-05, 9.7030640e-05, 9.7779729e-05, 9.8539478e-05, 9.9310229e-05, 1.0009235e-04, 1.0088626e-04, 1.0169239e-04, 1.0251126e-04, 1.0334339e-04, 1.0418935e-04, 1.0504972e-04, 1.0592514e-04, 1.0681634e-04, 1.0772411e-04, 1.0864932e-04, 1.0959293e-04, 1.1055593e-04, 1.1153942e-04, 1.1254461e-04, 1.1357287e-04, 1.1462560e-04, 1.1570434e-04, 1.1681072e-04, 1.1794661e-04, 1.1911413e-04, 1.2031563e-04, 1.2155382e-04, 1.2283171e-04, 1.2415263e-04, 1.2552011e-04, 1.2693802e-04, 1.2841050e-04, 1.2994438e-04, 1.3156373e-04, 1.3326946e-04, 1.3497518e-04, 1.3659454e-04, 1.3812842e-04, 1.3960090e-04, 1.4101880e-04, 1.4238628e-04, 1.4370720e-04, 1.4498510e-04, 1.4622328e-04, 1.4742478e-04, 1.4859230e-04, 1.4972820e-04, 1.5083458e-04, 1.5191331e-04, 1.5296605e-04, 1.5399430e-04, 1.5499950e-04, 1.5598298e-04, 1.5694598e-04, 1.5788959e-04, 1.5881481e-04, 1.5972258e-04, 1.6061377e-04, 1.6148920e-04, 1.6234957e-04, 1.6319552e-04, 1.6402765e-04, 1.6484652e-04, 1.6565266e-04, 1.6644656e-04, 1.6722868e-04, 1.6799943e-04, 1.6875918e-04, 1.6950827e-04, 1.7024703e-04, 1.7097577e-04, 1.7169483e-04, 1.7240454e-04, 1.7310522e-04, 1.7379718e-04, 1.7448067e-04, 1.7515594e-04, 1.7582318e-04, 1.7648257e-04, 1.7713426e-04, 1.7777840e-04, 1.7841514e-04, 1.7904465e-04, 1.7966710e-04, 1.8028268e-04, 1.8089158e-04, 1.8149399e-04, 1.8209009e-04, 1.8268001e-04, 1.8326390e-04, 1.8384185e-04, 1.8441399e-04, 1.8498038e-04, 1.8554112e-04, 1.8609630e-04, 1.8664600e-04, 1.8719030e-04, 1.8772931e-04, 1.8826311e-04, 1.8879181e-04, 1.8931551e-04, 1.8983431e-04, 1.9034831e-04, 1.9085759e-04, 1.9136226e-04, 1.9186238e-04, 1.9235803e-04, 1.9284929e-04, 1.9333623e-04, 1.9381892e-04, 1.9429741e-04, 1.9477177e-04, 1.9524207e-04, 1.9570835e-04, 1.9617066e-04, 1.9662904e-04, 1.9708354e-04, 1.9753420e-04, 1.9798106e-04, 1.9842416e-04, 1.9886357e-04, 1.9929933e-04, 1.9973151e-04, 2.0016017e-04, 2.0058536e-04, 2.0100715e-04, 2.0142557e-04, 2.0184068e-04, 2.0225251e-04, 2.0266110e-04, 2.0306648e-04, 2.0346870e-04, 2.0386779e-04, 2.0426379e-04, 2.0465674e-04, 2.0504670e-04, 2.0543369e-04, 2.0581777e-04, 2.0619898e-04, 2.0657735e-04, 2.0695291e-04, 2.0732570e-04, 2.0769573e-04, 2.0806303e-04, 2.0842761e-04, 2.0878950e-04, 2.0914871e-04, 2.0950527e-04, 2.0985921e-04, 2.1021054e-04, 2.1055929e-04, 2.1090550e-04, 2.1124919e-04, 2.1159038e-04, 2.1192911e-04, 2.1226540e-04, 2.1259927e-04, 2.1293075e-04, 2.1325988e-04, 2.1358669e-04, 2.1391119e-04, 2.1423343e-04, 2.1455342e-04, 2.1487119e-04, 2.1518676e-04, 2.1550016e-04, 2.1581140e-04, 2.1612051e-04, 2.1642749e-04, 2.1673237e-04, 2.1703517e-04, 2.1733592e-04, 2.1763463e-04, 2.1793133e-04, 2.1822605e-04, 2.1851879e-04, 2.1880959e-04, 2.1909844e-04, 2.1938538e-04, 2.1967040e-04, 2.1995353e-04, 2.2023476e-04, 2.2051410e-04, 2.2079158e-04, 2.2106719e-04, 2.2134096e-04, 2.2161290e-04, 2.2188302e-04, 2.2215135e-04, 2.2241790e-04, 2.2268268e-04, 2.2294572e-04, 2.2320702e-04, 2.2346661e-04, 2.2372448e-04, 2.2398067e-04, 2.2423517e-04, 2.2448802e-04, 2.2473922e-04, 2.2498879e-04, 2.2523675e-04, 2.2548311e-04, 2.2572789e-04, 2.2597110e-04, 2.2621276e-04, 2.2645288e-04, 2.2669147e-04, 2.2692855e-04, 2.2716414e-04, 2.2739824e-04, 2.2763088e-04, 2.2786207e-04, 2.2809182e-04, 2.2832014e-04, 2.2854704e-04, 2.2877255e-04, 2.2899665e-04, 2.2921937e-04, 2.2944072e-04, 2.2966070e-04, 2.2987931e-04, 2.3009659e-04, 2.3031252e-04, 2.3052713e-04, 2.3074044e-04, 2.3095244e-04, 2.3116315e-04, 2.3137259e-04, 2.3158075e-04, 2.3178765e-04, 2.3199329e-04, 2.3219768e-04, 2.3240082e-04, 2.3260272e-04, 2.3280338e-04, 2.3300282e-04, 2.3320103e-04, 2.3339804e-04, 2.3359384e-04, 2.3378844e-04, 2.3398186e-04, 2.3417410e-04, 2.3436517e-04, 2.3455507e-04, 2.3474382e-04, 2.3493143e-04, 2.3511789e-04, 2.3530322e-04, 2.3548743e-04, 2.3567052e-04, 2.3585251e-04, 2.3603341e-04, 2.3621322e-04, 2.3639194e-04, 2.3656960e-04, 2.3674619e-04, 2.3692173e-04, 2.3709622e-04, 2.3726967e-04, 2.3744210e-04, 2.3761350e-04, 2.3778390e-04, 2.3795329e-04, 2.3812169e-04, 2.3828911e-04, 2.3845555e-04, 2.3862103e-04, 2.3878553e-04, 2.3894908e-04, 2.3911168e-04, 2.3927332e-04, 2.3943403e-04, 2.3959380e-04, 2.3975265e-04, 2.3991058e-04, 2.4006760e-04, 2.4022372e-04, 2.4037894e-04, 2.4053328e-04, 2.4068673e-04, 2.4083930e-04, 2.4099100e-04, 2.4114183e-04, 2.4129180e-04, 2.4144092e-04, 2.4158918e-04, 2.4173660e-04, 2.4188317e-04, 2.4202892e-04, 2.4217384e-04, 2.4231793e-04, 2.4246122e-04, 2.4260369e-04, 2.4274535e-04, 2.4288621e-04, 2.4302628e-04, 2.4316555e-04, 2.4330403e-04, 2.4344173e-04, 2.4357865e-04, 2.4371479e-04, 2.4385016e-04, 2.4398476e-04, 2.4411860e-04, 2.4425168e-04, 2.4438399e-04, 2.4451556e-04, 2.4464637e-04, 2.4477643e-04, 2.4490575e-04, 2.4503433e-04, 2.4516218e-04, 2.4528930e-04, 2.4541569e-04, 2.4554137e-04, 2.4566634e-04, 2.4579059e-04, 2.4591414e-04, 2.4603699e-04, 2.4615913e-04, 2.4628058e-04, 2.4640134e-04, 2.4652142e-04, 2.4664081e-04, 2.4675952e-04, 2.4687757e-04, 2.4699494e-04, 2.4711166e-04, 2.4722772e-04, 2.4734313e-04, 2.4745788e-04, 2.4757200e-04, 2.4768547e-04, 2.4779831e-04, 2.4791051e-04, 2.4802208e-04, 2.4813303e-04, 2.4824336e-04, 2.4835307e-04, 2.4846217e-04, 2.4857066e-04, 2.4867855e-04, 2.4878583e-04, 2.4889253e-04, 2.4899862e-04, 2.4910413e-04, 2.4920905e-04, 2.4931339e-04, 2.4941715e-04, 2.4952033e-04, 2.4962295e-04, 2.4972499e-04, 2.4982647e-04, 2.4992739e-04, 2.5002775e-04, 2.5012755e-04, 2.5022680e-04, 2.5032550e-04, 2.5042364e-04, 2.5052125e-04, 2.5061831e-04, 2.5071484e-04, 2.5081083e-04, 2.5090628e-04, 2.5100121e-04, 2.5109562e-04, 2.5118951e-04, 2.5128287e-04, 2.5137572e-04, 2.5146805e-04, 2.5155987e-04, 2.5165119e-04, 2.5174199e-04, 2.5183229e-04, 2.5192209e-04, 2.5201140e-04, 2.5210021e-04, 2.5218852e-04, 2.5227636e-04, 2.5236370e-04, 2.5245057e-04, 2.5253695e-04, 2.5262286e-04, 2.5270829e-04, 2.5279324e-04, 2.5287773e-04, 2.5296174e-04, 2.5304529e-04, 2.5312837e-04, 2.5321100e-04, 2.5329316e-04, 2.5337487e-04, 2.5345612e-04, 2.5353691e-04, 2.5361726e-04, 2.5369715e-04, 2.5377660e-04, 2.5385560e-04, 2.5393416e-04, 2.5401228e-04, 2.5408996e-04, 2.5416720e-04, 2.5424401e-04, 2.5432039e-04, 2.5439635e-04, 2.5447187e-04, 2.5454697e-04, 2.5462166e-04, 2.5469592e-04, 2.5476976e-04, 2.5484319e-04, 2.5491621e-04, 2.5498882e-04, 2.5506102e-04, 2.5513283e-04, 2.5520423e-04, 2.5527523e-04, 2.5534585e-04, 2.5541607e-04, 2.5548589e-04, 2.5555533e-04, 2.5562439e-04, 2.5569306e-04, 2.5576135e-04, 2.5582927e-04, 2.5589680e-04, 2.5596397e-04, 2.5603077e-04, 2.5609720e-04, 2.5616326e-04, 2.5622897e-04, 2.5629431e-04, 2.5635930e-04, 2.5642393e-04, 2.5648821e-04, 2.5655213e-04, 2.5661571e-04, 2.5667894e-04, 2.5674183e-04, 2.5680438e-04, 2.5686658e-04, 2.5692846e-04, 2.5698999e-04, 2.5705120e-04, 2.5711207e-04, 2.5717261e-04, 2.5723283e-04, 2.5729272e-04, 2.5735229e-04, 2.5741153e-04, 2.5747046e-04, 2.5752907e-04, 2.5758737e-04, 2.5764535e-04, 2.5770302e-04, 2.5776038e-04, 2.5781743e-04, 2.5787417e-04, 2.5793060e-04, 2.5798673e-04, 2.5804255e-04, 2.5809808e-04, 2.5815330e-04, 2.5820822e-04, 2.5826284e-04, 2.5831717e-04, 2.5837121e-04, 2.5842495e-04, 2.5847840e-04, 2.5853156e-04, 2.5858442e-04, 2.5863700e-04, 2.5868929e-04, 2.5874130e-04, 2.5879301e-04, 2.5884445e-04, 2.5889560e-04, 2.5894647e-04, 2.5899706e-04, 2.5904738e-04, 2.5909741e-04, 2.5914717e-04, 2.5919665e-04, 2.5924586e-04, 2.5929479e-04, 2.5934346e-04, 2.5939184e-04, 2.5943996e-04, 2.5948781e-04, 2.5953540e-04, 2.5958271e-04, 2.5962977e-04, 2.5967655e-04, 2.5972308e-04, 2.5976934e-04, 2.5981534e-04, 2.5986109e-04, 2.5990657e-04, 2.5995179e-04, 2.5999676e-04, 2.6004148e-04, 2.6008594e-04, 2.6013015e-04, 2.6017410e-04, 2.6021781e-04, 2.6026126e-04, 2.6030447e-04, 2.6034743e-04, 2.6039014e-04, 2.6043260e-04, 2.6047482e-04, 2.6051680e-04, 2.6055853e-04, 2.6060001e-04, 2.6064126e-04, 2.6068227e-04, 2.6072303e-04, 2.6076356e-04, 2.6080386e-04, 2.6084391e-04, 2.6088373e-04, 2.6092332e-04, 2.6096267e-04, 2.6100179e-04, 2.6104067e-04, 2.6107933e-04, 2.6111776e-04, 2.6115596e-04, 2.6119393e-04, 2.6123168e-04, 2.6126921e-04, 2.6130651e-04, 2.6134359e-04, 2.6138046e-04, 2.6141710e-04, 2.6145353e-04, 2.6148974e-04, 2.6152574e-04, 2.6156152e-04, 2.6159709e-04, 2.6163245e-04, 2.6166760e-04, 2.6170255e-04, 2.6173729e-04, 2.6177182e-04, 2.6180615e-04, 2.6184028e-04, 2.6187421e-04, 2.6190794e-04, 2.6194146e-04, 2.6197479e-04, 2.6200793e-04, 2.6204087e-04, 2.6207362e-04, 2.6210617e-04, 2.6213854e-04, 2.6217071e-04, 2.6220270e-04, 2.6223450e-04, 2.6226611e-04, 2.6229754e-04, 2.6232879e-04, 2.6235985e-04, 2.6239073e-04, 2.6242143e-04, 2.6245196e-04, 2.6248230e-04, 2.6251247e-04, 2.6254247e-04, 2.6257229e-04, 2.6260193e-04, 2.6263141e-04, 2.6266071e-04, 2.6268985e-04, 2.6271881e-04, 2.6274760e-04, 2.6277623e-04, 2.6280469e-04, 2.6283298e-04, 2.6286112e-04, 2.6288908e-04, 2.6291689e-04, 2.6294453e-04, 2.6297201e-04, 2.6299933e-04, 2.6302650e-04, 2.6305350e-04, 2.6308034e-04, 2.6310703e-04, 2.6313356e-04, 2.6315994e-04, 2.6318616e-04, 2.6321223e-04, 2.6323814e-04, 2.6326390e-04, 2.6328951e-04, 2.6331497e-04, 2.6334027e-04, 2.6336543e-04, 2.6339043e-04, 2.6341529e-04, 2.6343999e-04, 2.6346455e-04, 2.6348896e-04, 2.6351323e-04, 2.6353735e-04, 2.6356132e-04, 2.6358515e-04, 2.6360883e-04, 2.6363237e-04, 2.6365576e-04, 2.6367901e-04, 2.6370212e-04, 2.6372509e-04, 2.6374791e-04, 2.6377059e-04, 2.6379314e-04, 2.6381554e-04, 2.6383780e-04, 2.6385993e-04, 2.6388192e-04, 2.6390377e-04, 2.6392548e-04, 2.6394705e-04, 2.6396849e-04, 2.6398980e-04, 2.6401096e-04, 2.6403200e-04, 2.6405290e-04, 2.6407367e-04, 2.6409430e-04, 2.6411481e-04, 2.6413518e-04, 2.6415542e-04, 2.6417553e-04, 2.6419551e-04, 2.6421537e-04, 2.6423509e-04, 2.6425468e-04, 2.6427415e-04, 2.6429350e-04, 2.6431271e-04, 2.6433180e-04, 2.6435077e-04, 2.6436961e-04, 2.6438833e-04, 2.6440693e-04, 2.6442541e-04, 2.6444376e-04, 2.6446199e-04, 2.6448011e-04, 2.6449810e-04, 2.6451598e-04, 2.6453374e-04, 2.6455138e-04, 2.6456891e-04, 2.6458632e-04, 2.6460361e-04, 2.6462080e-04, 2.6463786e-04, 2.6465482e-04, 2.6467166e-04, 2.6468839e-04, 2.6470501e-04, 2.6472152e-04, 2.6473792e-04, 2.6475421e-04, 2.6477040e-04, 2.6478647e-04, 2.6480244e-04, 2.6481830e-04, 2.6483406e-04, 2.6484970e-04, 2.6486525e-04, 2.6488069e-04, 2.6489602e-04, 2.6491125e-04, 2.6492637e-04, 2.6494139e-04, 2.6495632e-04, 2.6497113e-04, 2.6498585e-04, 2.6500047e-04, 2.6501499e-04, 2.6502940e-04, 2.6504372e-04, 2.6505794e-04, 2.6507206e-04, 2.6508608e-04, 2.6510001e-04, 2.6511384e-04, 2.6512757e-04, 2.6514120e-04, 2.6515475e-04, 2.6516819e-04, 2.6518154e-04, 2.6519480e-04, 2.6520797e-04, 2.6522104e-04, 2.6523402e-04, 2.6524690e-04, 2.6525970e-04, 2.6527240e-04, 2.6528502e-04, 2.6529754e-04, 2.6530998e-04, 2.6532232e-04, 2.6533458e-04, 2.6534675e-04, 2.6535883e-04, 2.6537083e-04, 2.6538274e-04, 2.6539456e-04, 2.6540629e-04, 2.6541794e-04, 2.6542951e-04, 2.6544099e-04, 2.6545239e-04, 2.6546371e-04, 2.6547494e-04, 2.6548609e-04, 2.6549715e-04, 2.6550814e-04, 2.6551904e-04, 2.6552986e-04, 2.6554061e-04, 2.6555127e-04, 2.6556185e-04, 2.6557235e-04, 2.6558277e-04, 2.6559311e-04, 2.6560338e-04, 2.6561356e-04, 2.6562367e-04, 2.6563370e-04, 2.6564366e-04, 2.6565353e-04, 2.6566333e-04, 2.6567306e-04, 2.6568271e-04, 2.6569228e-04, 2.6570178e-04, 2.6571120e-04, 2.6572056e-04, 2.6572983e-04, 2.6573904e-04, 2.6574817e-04, 2.6575723e-04, 2.6576621e-04, 2.6577513e-04, 2.6578397e-04, 2.6579274e-04, 2.6580145e-04, 2.6581008e-04, 2.6581864e-04, 2.6582713e-04, 2.6583556e-04, 2.6584391e-04, 2.6585220e-04, 2.6586042e-04, 2.6586857e-04, 2.6587665e-04, 2.6588467e-04, 2.6589262e-04, 2.6590051e-04, 2.6590832e-04, 2.6591608e-04, 2.6592377e-04, 2.6593139e-04, 2.6593896e-04, 2.6594646e-04, 2.6595389e-04, 2.6596126e-04, 2.6596858e-04, 2.6597583e-04, 2.6598301e-04, 2.6599014e-04, 2.6599721e-04, 2.6600421e-04, 2.6601116e-04, 2.6601805e-04, 2.6602488e-04, 2.6603165e-04, 2.6603836e-04, 2.6604502e-04, 2.6605162e-04, 2.6605816e-04, 2.6606464e-04, 2.6607107e-04, 2.6607745e-04, 2.6608377e-04, 2.6609003e-04, 2.6609624e-04, 2.6610240e-04, 2.6610850e-04, 2.6611455e-04, 2.6612055e-04, 2.6612649e-04, 2.6613238e-04, 2.6613822e-04, 2.6614401e-04, 2.6614975e-04, 2.6615543e-04, 2.6616107e-04, 2.6616666e-04, 2.6617219e-04, 2.6617768e-04, 2.6618312e-04, 2.6618852e-04, 2.6619386e-04, 2.6619916e-04, 2.6620441e-04, 2.6620961e-04, 2.6621476e-04, 2.6621987e-04, 2.6622494e-04, 2.6622996e-04, 2.6623493e-04, 2.6623986e-04, 2.6624474e-04, 2.6624959e-04, 2.6625438e-04, 2.6625914e-04, 2.6626385e-04, 2.6626852e-04, 2.6627314e-04, 2.6627773e-04, 2.6628227e-04, 2.6628677e-04, 2.6629123e-04, 2.6629565e-04, 2.6630003e-04, 2.6630437e-04, 2.6630866e-04, 2.6631292e-04, 2.6631714e-04, 2.6632132e-04, 2.6632546e-04, 2.6632957e-04, 2.6633363e-04, 2.6633766e-04, 2.6634164e-04, 2.6634559e-04, 2.6634951e-04, 2.6635338e-04, 2.6635722e-04, 2.6636102e-04, 2.6636479e-04, 2.6636852e-04, 2.6637221e-04, 2.6637586e-04, 2.6637948e-04, 2.6638307e-04, 2.6638662e-04, 2.6639013e-04, 2.6639361e-04, 2.6639705e-04, 2.6640046e-04, 2.6640384e-04, 2.6640718e-04, 2.6641048e-04, 2.6641376e-04, 2.6641700e-04, 2.6642020e-04, 2.6642337e-04, 2.6642651e-04, 2.6642962e-04, 2.6643269e-04, 2.6643573e-04, 2.6643874e-04, 2.6644171e-04, 2.6644466e-04, 2.6644757e-04, 2.6645045e-04, 2.6645329e-04, 2.6645611e-04, 2.6645889e-04, 2.6646164e-04, 2.6646436e-04, 2.6646705e-04, 2.6646971e-04, 2.6647234e-04, 2.6647494e-04, 2.6647750e-04, 2.6648004e-04, 2.6648254e-04, 2.6648501e-04, 2.6648746e-04, 2.6648987e-04, 2.6649225e-04, 2.6649460e-04, 2.6649692e-04, 2.6649921e-04, 2.6650147e-04, 2.6650371e-04, 2.6650591e-04, 2.6650808e-04, 2.6651022e-04, 2.6651234e-04, 2.6651442e-04, 2.6651648e-04, 2.6651850e-04, 2.6652050e-04, 2.6652247e-04, 2.6652441e-04, 2.6652632e-04, 2.6652820e-04, 2.6653005e-04, 2.6653188e-04, 2.6653368e-04, 2.6653545e-04, 2.6653720e-04},
- // continuous = true,
- // nFuture=500,
- // nPast=500);
-
- // // Minimum-phase, ds = 0.5m
- // extends Interpolators.StepResponse(
- // T = { 0.0000000e+00, 5.0000000e-01, 1.0000000e+00, 1.5000000e+00, 2.0000000e+00, 2.5000000e+00, 3.0000000e+00, 3.5000000e+00, 4.0000000e+00, 4.5000000e+00, 5.0000000e+00, 5.5000000e+00, 6.0000000e+00, 6.5000000e+00, 7.0000000e+00, 7.5000000e+00, 8.0000000e+00, 8.5000000e+00, 9.0000000e+00, 9.5000000e+00, 1.0000000e+01, 1.0500000e+01, 1.1000000e+01, 1.1500000e+01, 1.2000000e+01, 1.2500000e+01, 1.3000000e+01, 1.3500000e+01, 1.4000000e+01, 1.4500000e+01, 1.5000000e+01, 1.5500000e+01, 1.6000000e+01, 1.6500000e+01, 1.7000000e+01, 1.7500000e+01, 1.8000000e+01, 1.8500000e+01, 1.9000000e+01, 1.9500000e+01, 2.0000000e+01, 2.0500000e+01, 2.1000000e+01, 2.1500000e+01, 2.2000000e+01, 2.2500000e+01, 2.3000000e+01, 2.3500000e+01, 2.4000000e+01, 2.4500000e+01, 2.5000000e+01, 2.5500000e+01, 2.6000000e+01, 2.6500000e+01, 2.7000000e+01, 2.7500000e+01, 2.8000000e+01, 2.8500000e+01, 2.9000000e+01, 2.9500000e+01, 3.0000000e+01, 3.0500000e+01, 3.1000000e+01, 3.1500000e+01, 3.2000000e+01, 3.2500000e+01, 3.3000000e+01, 3.3500000e+01, 3.4000000e+01, 3.4500000e+01, 3.5000000e+01, 3.5500000e+01, 3.6000000e+01, 3.6500000e+01, 3.7000000e+01, 3.7500000e+01, 3.8000000e+01, 3.8500000e+01, 3.9000000e+01, 3.9500000e+01, 4.0000000e+01, 4.0500000e+01, 4.1000000e+01, 4.1500000e+01, 4.2000000e+01, 4.2500000e+01, 4.3000000e+01, 4.3500000e+01, 4.4000000e+01, 4.4500000e+01, 4.5000000e+01, 4.5500000e+01, 4.6000000e+01, 4.6500000e+01, 4.7000000e+01, 4.7500000e+01, 4.8000000e+01, 4.8500000e+01, 4.9000000e+01, 4.9500000e+01, 5.0000000e+01, 5.0500000e+01, 5.1000000e+01, 5.1500000e+01, 5.2000000e+01, 5.2500000e+01, 5.3000000e+01, 5.3500000e+01, 5.4000000e+01, 5.4500000e+01, 5.5000000e+01, 5.5500000e+01, 5.6000000e+01, 5.6500000e+01, 5.7000000e+01, 5.7500000e+01, 5.8000000e+01, 5.8500000e+01, 5.9000000e+01, 5.9500000e+01, 6.0000000e+01, 6.0500000e+01, 6.1000000e+01, 6.1500000e+01, 6.2000000e+01, 6.2500000e+01, 6.3000000e+01, 6.3500000e+01, 6.4000000e+01, 6.4500000e+01, 6.5000000e+01, 6.5500000e+01, 6.6000000e+01, 6.6500000e+01, 6.7000000e+01, 6.7500000e+01, 6.8000000e+01, 6.8500000e+01, 6.9000000e+01, 6.9500000e+01, 7.0000000e+01, 7.0500000e+01, 7.1000000e+01, 7.1500000e+01, 7.2000000e+01},
- // step = { 0.0000000e+00, 7.1868479e-06, 1.6368635e-05, 2.5626276e-05, 3.4544335e-05, 4.3138215e-05, 5.1428279e-05, 5.9426080e-05, 6.7136853e-05, 7.4566278e-05, 8.1720887e-05, 8.8612354e-05, 9.5252842e-05, 1.0165097e-04, 1.0781622e-04, 1.1375973e-04, 1.1948896e-04, 1.2500807e-04, 1.3032272e-04, 1.3544167e-04, 1.4037443e-04, 1.4512838e-04, 1.4970838e-04, 1.5411901e-04, 1.5836605e-04, 1.6245613e-04, 1.6639616e-04, 1.7019278e-04, 1.7385149e-04, 1.7737664e-04, 1.8077232e-04, 1.8404307e-04, 1.8719367e-04, 1.9022877e-04, 1.9315268e-04, 1.9596955e-04, 1.9868335e-04, 2.0129751e-04, 2.0381487e-04, 2.0623820e-04, 2.0857059e-04, 2.1081552e-04, 2.1297676e-04, 2.1505814e-04, 2.1706326e-04, 2.1899532e-04, 2.2085712e-04, 2.2265119e-04, 2.2437983e-04, 2.2604499e-04, 2.2764828e-04, 2.2919127e-04, 2.3067577e-04, 2.3210383e-04, 2.3347769e-04, 2.3479971e-04, 2.3607226e-04, 2.3729758e-04, 2.3847769e-04, 2.3961432e-04, 2.4070897e-04, 2.4176297e-04, 2.4277754e-04, 2.4375398e-04, 2.4469364e-04, 2.4559790e-04, 2.4646808e-04, 2.4730544e-04, 2.4811122e-04, 2.4888667e-04, 2.4963299e-04, 2.5035127e-04, 2.5104247e-04, 2.5170748e-04, 2.5234712e-04, 2.5296216e-04, 2.5355339e-04, 2.5412162e-04, 2.5466768e-04, 2.5519246e-04, 2.5569687e-04, 2.5618185e-04, 2.5664833e-04, 2.5709718e-04, 2.5752921e-04, 2.5794519e-04, 2.5834576e-04, 2.5873144e-04, 2.5910263e-04, 2.5945967e-04, 2.5980286e-04, 2.6013258e-04, 2.6044922e-04, 2.6075329e-04, 2.6104527e-04, 2.6132565e-04, 2.6159489e-04, 2.6185341e-04, 2.6210157e-04, 2.6233965e-04, 2.6256791e-04, 2.6278659e-04, 2.6299596e-04, 2.6319629e-04, 2.6338789e-04, 2.6357107e-04, 2.6374622e-04, 2.6391369e-04, 2.6407388e-04, 2.6422714e-04, 2.6437378e-04, 2.6451405e-04, 2.6464817e-04, 2.6477633e-04, 2.6489870e-04, 2.6501545e-04, 2.6512670e-04, 2.6523260e-04, 2.6533328e-04, 2.6542888e-04, 2.6551954e-04, 2.6560542e-04, 2.6568667e-04, 2.6576344e-04, 2.6583585e-04, 2.6590403e-04, 2.6596804e-04, 2.6602795e-04, 2.6608380e-04, 2.6613566e-04, 2.6618362e-04, 2.6622780e-04, 2.6626836e-04, 2.6630548e-04, 2.6633936e-04, 2.6637021e-04, 2.6639823e-04, 2.6642359e-04, 2.6644646e-04, 2.6646694e-04, 2.6648516e-04, 2.6650119e-04, 2.6651513e-04, 2.6652710e-04, 2.6653720e-04},
- // continuous = true,
- // nFuture=0,
- // nPast=500);
-
- // // Minimum-phase, ds = 0.1m
- // extends Interpolators.StepResponse(
- // T = { 0.0000000e+00, 1.0000000e-01, 2.0000000e-01, 3.0000000e-01, 4.0000000e-01, 5.0000000e-01, 6.0000000e-01, 7.0000000e-01, 8.0000000e-01, 9.0000000e-01, 1.0000000e+00, 1.1000000e+00, 1.2000000e+00, 1.3000000e+00, 1.4000000e+00, 1.5000000e+00, 1.6000000e+00, 1.7000000e+00, 1.8000000e+00, 1.9000000e+00, 2.0000000e+00, 2.1000000e+00, 2.2000000e+00, 2.3000000e+00, 2.4000000e+00, 2.5000000e+00, 2.6000000e+00, 2.7000000e+00, 2.8000000e+00, 2.9000000e+00, 3.0000000e+00, 3.1000000e+00, 3.2000000e+00, 3.3000000e+00, 3.4000000e+00, 3.5000000e+00, 3.6000000e+00, 3.7000000e+00, 3.8000000e+00, 3.9000000e+00, 4.0000000e+00, 4.1000000e+00, 4.2000000e+00, 4.3000000e+00, 4.4000000e+00, 4.5000000e+00, 4.6000000e+00, 4.7000000e+00, 4.8000000e+00, 4.9000000e+00, 5.0000000e+00, 5.1000000e+00, 5.2000000e+00, 5.3000000e+00, 5.4000000e+00, 5.5000000e+00, 5.6000000e+00, 5.7000000e+00, 5.8000000e+00, 5.9000000e+00, 6.0000000e+00, 6.1000000e+00, 6.2000000e+00, 6.3000000e+00, 6.4000000e+00, 6.5000000e+00, 6.6000000e+00, 6.7000000e+00, 6.8000000e+00, 6.9000000e+00, 7.0000000e+00, 7.1000000e+00, 7.2000000e+00, 7.3000000e+00, 7.4000000e+00, 7.5000000e+00, 7.6000000e+00, 7.7000000e+00, 7.8000000e+00, 7.9000000e+00, 8.0000000e+00, 8.1000000e+00, 8.2000000e+00, 8.3000000e+00, 8.4000000e+00, 8.5000000e+00, 8.6000000e+00, 8.7000000e+00, 8.8000000e+00, 8.9000000e+00, 9.0000000e+00, 9.1000000e+00, 9.2000000e+00, 9.3000000e+00, 9.4000000e+00, 9.5000000e+00, 9.6000000e+00, 9.7000000e+00, 9.8000000e+00, 9.9000000e+00, 1.0000000e+01, 1.0100000e+01, 1.0200000e+01, 1.0300000e+01, 1.0400000e+01, 1.0500000e+01, 1.0600000e+01, 1.0700000e+01, 1.0800000e+01, 1.0900000e+01, 1.1000000e+01, 1.1100000e+01, 1.1200000e+01, 1.1300000e+01, 1.1400000e+01, 1.1500000e+01, 1.1600000e+01, 1.1700000e+01, 1.1800000e+01, 1.1900000e+01, 1.2000000e+01, 1.2100000e+01, 1.2200000e+01, 1.2300000e+01, 1.2400000e+01, 1.2500000e+01, 1.2600000e+01, 1.2700000e+01, 1.2800000e+01, 1.2900000e+01, 1.3000000e+01, 1.3100000e+01, 1.3200000e+01, 1.3300000e+01, 1.3400000e+01, 1.3500000e+01, 1.3600000e+01, 1.3700000e+01, 1.3800000e+01, 1.3900000e+01, 1.4000000e+01, 1.4100000e+01, 1.4200000e+01, 1.4300000e+01, 1.4400000e+01, 1.4500000e+01, 1.4600000e+01, 1.4700000e+01, 1.4800000e+01, 1.4900000e+01, 1.5000000e+01, 1.5100000e+01, 1.5200000e+01, 1.5300000e+01, 1.5400000e+01, 1.5500000e+01, 1.5600000e+01, 1.5700000e+01, 1.5800000e+01, 1.5900000e+01, 1.6000000e+01, 1.6100000e+01, 1.6200000e+01, 1.6300000e+01, 1.6400000e+01, 1.6500000e+01, 1.6600000e+01, 1.6700000e+01, 1.6800000e+01, 1.6900000e+01, 1.7000000e+01, 1.7100000e+01, 1.7200000e+01, 1.7300000e+01, 1.7400000e+01, 1.7500000e+01, 1.7600000e+01, 1.7700000e+01, 1.7800000e+01, 1.7900000e+01, 1.8000000e+01, 1.8100000e+01, 1.8200000e+01, 1.8300000e+01, 1.8400000e+01, 1.8500000e+01, 1.8600000e+01, 1.8700000e+01, 1.8800000e+01, 1.8900000e+01, 1.9000000e+01, 1.9100000e+01, 1.9200000e+01, 1.9300000e+01, 1.9400000e+01, 1.9500000e+01, 1.9600000e+01, 1.9700000e+01, 1.9800000e+01, 1.9900000e+01, 2.0000000e+01, 2.0100000e+01, 2.0200000e+01, 2.0300000e+01, 2.0400000e+01, 2.0500000e+01, 2.0600000e+01, 2.0700000e+01, 2.0800000e+01, 2.0900000e+01, 2.1000000e+01, 2.1100000e+01, 2.1200000e+01, 2.1300000e+01, 2.1400000e+01, 2.1500000e+01, 2.1600000e+01, 2.1700000e+01, 2.1800000e+01, 2.1900000e+01, 2.2000000e+01, 2.2100000e+01, 2.2200000e+01, 2.2300000e+01, 2.2400000e+01, 2.2500000e+01, 2.2600000e+01, 2.2700000e+01, 2.2800000e+01, 2.2900000e+01, 2.3000000e+01, 2.3100000e+01, 2.3200000e+01, 2.3300000e+01, 2.3400000e+01, 2.3500000e+01, 2.3600000e+01, 2.3700000e+01, 2.3800000e+01, 2.3900000e+01, 2.4000000e+01, 2.4100000e+01, 2.4200000e+01, 2.4300000e+01, 2.4400000e+01, 2.4500000e+01, 2.4600000e+01, 2.4700000e+01, 2.4800000e+01, 2.4900000e+01, 2.5000000e+01, 2.5100000e+01, 2.5200000e+01, 2.5300000e+01, 2.5400000e+01, 2.5500000e+01, 2.5600000e+01, 2.5700000e+01, 2.5800000e+01, 2.5900000e+01, 2.6000000e+01, 2.6100000e+01, 2.6200000e+01, 2.6300000e+01, 2.6400000e+01, 2.6500000e+01, 2.6600000e+01, 2.6700000e+01, 2.6800000e+01, 2.6900000e+01, 2.7000000e+01, 2.7100000e+01, 2.7200000e+01, 2.7300000e+01, 2.7400000e+01, 2.7500000e+01, 2.7600000e+01, 2.7700000e+01, 2.7800000e+01, 2.7900000e+01, 2.8000000e+01, 2.8100000e+01, 2.8200000e+01, 2.8300000e+01, 2.8400000e+01, 2.8500000e+01, 2.8600000e+01, 2.8700000e+01, 2.8800000e+01, 2.8900000e+01, 2.9000000e+01, 2.9100000e+01, 2.9200000e+01, 2.9300000e+01, 2.9400000e+01, 2.9500000e+01, 2.9600000e+01, 2.9700000e+01, 2.9800000e+01, 2.9900000e+01, 3.0000000e+01, 3.0100000e+01, 3.0200000e+01, 3.0300000e+01, 3.0400000e+01, 3.0500000e+01, 3.0600000e+01, 3.0700000e+01, 3.0800000e+01, 3.0900000e+01, 3.1000000e+01, 3.1100000e+01, 3.1200000e+01, 3.1300000e+01, 3.1400000e+01, 3.1500000e+01, 3.1600000e+01, 3.1700000e+01, 3.1800000e+01, 3.1900000e+01, 3.2000000e+01, 3.2100000e+01, 3.2200000e+01, 3.2300000e+01, 3.2400000e+01, 3.2500000e+01, 3.2600000e+01, 3.2700000e+01, 3.2800000e+01, 3.2900000e+01, 3.3000000e+01, 3.3100000e+01, 3.3200000e+01, 3.3300000e+01, 3.3400000e+01, 3.3500000e+01, 3.3600000e+01, 3.3700000e+01, 3.3800000e+01, 3.3900000e+01, 3.4000000e+01, 3.4100000e+01, 3.4200000e+01, 3.4300000e+01, 3.4400000e+01, 3.4500000e+01, 3.4600000e+01, 3.4700000e+01, 3.4800000e+01, 3.4900000e+01, 3.5000000e+01, 3.5100000e+01, 3.5200000e+01, 3.5300000e+01, 3.5400000e+01, 3.5500000e+01, 3.5600000e+01, 3.5700000e+01, 3.5800000e+01, 3.5900000e+01, 3.6000000e+01, 3.6100000e+01, 3.6200000e+01, 3.6300000e+01, 3.6400000e+01, 3.6500000e+01, 3.6600000e+01, 3.6700000e+01, 3.6800000e+01, 3.6900000e+01, 3.7000000e+01, 3.7100000e+01, 3.7200000e+01, 3.7300000e+01, 3.7400000e+01, 3.7500000e+01, 3.7600000e+01, 3.7700000e+01, 3.7800000e+01, 3.7900000e+01, 3.8000000e+01, 3.8100000e+01, 3.8200000e+01, 3.8300000e+01, 3.8400000e+01, 3.8500000e+01, 3.8600000e+01, 3.8700000e+01, 3.8800000e+01, 3.8900000e+01, 3.9000000e+01, 3.9100000e+01, 3.9200000e+01, 3.9300000e+01, 3.9400000e+01, 3.9500000e+01, 3.9600000e+01, 3.9700000e+01, 3.9800000e+01, 3.9900000e+01, 4.0000000e+01, 4.0100000e+01, 4.0200000e+01, 4.0300000e+01, 4.0400000e+01, 4.0500000e+01, 4.0600000e+01, 4.0700000e+01, 4.0800000e+01, 4.0900000e+01, 4.1000000e+01, 4.1100000e+01, 4.1200000e+01, 4.1300000e+01, 4.1400000e+01, 4.1500000e+01, 4.1600000e+01, 4.1700000e+01, 4.1800000e+01, 4.1900000e+01, 4.2000000e+01, 4.2100000e+01, 4.2200000e+01, 4.2300000e+01, 4.2400000e+01, 4.2500000e+01, 4.2600000e+01, 4.2700000e+01, 4.2800000e+01, 4.2900000e+01, 4.3000000e+01, 4.3100000e+01, 4.3200000e+01, 4.3300000e+01, 4.3400000e+01, 4.3500000e+01, 4.3600000e+01, 4.3700000e+01, 4.3800000e+01, 4.3900000e+01, 4.4000000e+01, 4.4100000e+01, 4.4200000e+01, 4.4300000e+01, 4.4400000e+01, 4.4500000e+01, 4.4600000e+01, 4.4700000e+01, 4.4800000e+01, 4.4900000e+01, 4.5000000e+01, 4.5100000e+01, 4.5200000e+01, 4.5300000e+01, 4.5400000e+01, 4.5500000e+01, 4.5600000e+01, 4.5700000e+01, 4.5800000e+01, 4.5900000e+01, 4.6000000e+01, 4.6100000e+01, 4.6200000e+01, 4.6300000e+01, 4.6400000e+01, 4.6500000e+01, 4.6600000e+01, 4.6700000e+01, 4.6800000e+01, 4.6900000e+01, 4.7000000e+01, 4.7100000e+01, 4.7200000e+01, 4.7300000e+01, 4.7400000e+01, 4.7500000e+01, 4.7600000e+01, 4.7700000e+01, 4.7800000e+01, 4.7900000e+01, 4.8000000e+01, 4.8100000e+01, 4.8200000e+01, 4.8300000e+01, 4.8400000e+01, 4.8500000e+01, 4.8600000e+01, 4.8700000e+01, 4.8800000e+01, 4.8900000e+01, 4.9000000e+01, 4.9100000e+01, 4.9200000e+01, 4.9300000e+01, 4.9400000e+01, 4.9500000e+01, 4.9600000e+01, 4.9700000e+01, 4.9800000e+01, 4.9900000e+01, 5.0000000e+01, 5.0100000e+01, 5.0200000e+01, 5.0300000e+01, 5.0400000e+01, 5.0500000e+01, 5.0600000e+01, 5.0700000e+01, 5.0800000e+01, 5.0900000e+01, 5.1000000e+01, 5.1100000e+01, 5.1200000e+01, 5.1300000e+01, 5.1400000e+01, 5.1500000e+01, 5.1600000e+01, 5.1700000e+01, 5.1800000e+01, 5.1900000e+01, 5.2000000e+01, 5.2100000e+01, 5.2200000e+01, 5.2300000e+01, 5.2400000e+01, 5.2500000e+01, 5.2600000e+01, 5.2700000e+01, 5.2800000e+01, 5.2900000e+01, 5.3000000e+01, 5.3100000e+01, 5.3200000e+01, 5.3300000e+01, 5.3400000e+01, 5.3500000e+01, 5.3600000e+01, 5.3700000e+01, 5.3800000e+01, 5.3900000e+01, 5.4000000e+01, 5.4100000e+01, 5.4200000e+01, 5.4300000e+01, 5.4400000e+01, 5.4500000e+01, 5.4600000e+01, 5.4700000e+01, 5.4800000e+01, 5.4900000e+01, 5.5000000e+01, 5.5100000e+01, 5.5200000e+01, 5.5300000e+01, 5.5400000e+01, 5.5500000e+01, 5.5600000e+01, 5.5700000e+01, 5.5800000e+01, 5.5900000e+01, 5.6000000e+01, 5.6100000e+01, 5.6200000e+01, 5.6300000e+01, 5.6400000e+01, 5.6500000e+01, 5.6600000e+01, 5.6700000e+01, 5.6800000e+01, 5.6900000e+01, 5.7000000e+01, 5.7100000e+01, 5.7200000e+01, 5.7300000e+01, 5.7400000e+01, 5.7500000e+01, 5.7600000e+01, 5.7700000e+01, 5.7800000e+01, 5.7900000e+01, 5.8000000e+01, 5.8100000e+01, 5.8200000e+01, 5.8300000e+01, 5.8400000e+01, 5.8500000e+01, 5.8600000e+01, 5.8700000e+01, 5.8800000e+01, 5.8900000e+01, 5.9000000e+01, 5.9100000e+01, 5.9200000e+01, 5.9300000e+01, 5.9400000e+01, 5.9500000e+01, 5.9600000e+01, 5.9700000e+01, 5.9800000e+01, 5.9900000e+01, 6.0000000e+01, 6.0100000e+01, 6.0200000e+01, 6.0300000e+01, 6.0400000e+01, 6.0500000e+01, 6.0600000e+01, 6.0700000e+01, 6.0800000e+01, 6.0900000e+01, 6.1000000e+01, 6.1100000e+01, 6.1200000e+01, 6.1300000e+01, 6.1400000e+01, 6.1500000e+01, 6.1600000e+01, 6.1700000e+01, 6.1800000e+01, 6.1900000e+01, 6.2000000e+01, 6.2100000e+01, 6.2200000e+01, 6.2300000e+01, 6.2400000e+01, 6.2500000e+01, 6.2600000e+01, 6.2700000e+01, 6.2800000e+01, 6.2900000e+01, 6.3000000e+01, 6.3100000e+01, 6.3200000e+01, 6.3300000e+01, 6.3400000e+01, 6.3500000e+01, 6.3600000e+01, 6.3700000e+01, 6.3800000e+01, 6.3900000e+01, 6.4000000e+01, 6.4100000e+01, 6.4200000e+01, 6.4300000e+01, 6.4400000e+01, 6.4500000e+01, 6.4600000e+01, 6.4700000e+01, 6.4800000e+01, 6.4900000e+01, 6.5000000e+01, 6.5100000e+01, 6.5200000e+01, 6.5300000e+01, 6.5400000e+01, 6.5500000e+01, 6.5600000e+01, 6.5700000e+01, 6.5800000e+01, 6.5900000e+01, 6.6000000e+01, 6.6100000e+01, 6.6200000e+01, 6.6300000e+01, 6.6400000e+01, 6.6500000e+01, 6.6600000e+01, 6.6700000e+01, 6.6800000e+01, 6.6900000e+01, 6.7000000e+01, 6.7100000e+01, 6.7200000e+01, 6.7300000e+01, 6.7400000e+01, 6.7500000e+01, 6.7600000e+01, 6.7700000e+01, 6.7800000e+01, 6.7900000e+01, 6.8000000e+01, 6.8100000e+01, 6.8200000e+01, 6.8300000e+01, 6.8400000e+01, 6.8500000e+01, 6.8600000e+01, 6.8700000e+01, 6.8800000e+01, 6.8900000e+01, 6.9000000e+01, 6.9100000e+01, 6.9200000e+01, 6.9300000e+01, 6.9400000e+01, 6.9500000e+01, 6.9600000e+01, 6.9700000e+01, 6.9800000e+01, 6.9900000e+01, 7.0000000e+01, 7.0100000e+01, 7.0200000e+01, 7.0300000e+01, 7.0400000e+01, 7.0500000e+01, 7.0600000e+01, 7.0700000e+01, 7.0800000e+01, 7.0900000e+01, 7.1000000e+01, 7.1100000e+01, 7.1200000e+01, 7.1300000e+01, 7.1400000e+01, 7.1500000e+01, 7.1600000e+01, 7.1700000e+01, 7.1800000e+01, 7.1900000e+01},
- // step = { 0.0000000e+00, 7.2399652e-07, 1.8107331e-06, 3.1282662e-06, 4.6082246e-06, 6.2061729e-06, 7.8890890e-06, 9.6326121e-06, 1.1417863e-05, 1.3230248e-05, 1.5058720e-05, 1.6895120e-05, 1.8733651e-05, 2.0570354e-05, 2.2402332e-05, 2.4227427e-05, 2.6044207e-05, 2.7851617e-05, 2.9648511e-05, 3.1433708e-05, 3.3206498e-05, 3.4966893e-05, 3.6715296e-05, 3.8451937e-05, 4.0176561e-05, 4.1888603e-05, 4.3587645e-05, 4.5273713e-05, 4.6947181e-05, 4.8608491e-05, 5.0257929e-05, 5.1895553e-05, 5.3521235e-05, 5.5134789e-05, 5.6736110e-05, 5.8325216e-05, 5.9902219e-05, 6.1467270e-05, 6.3020538e-05, 6.4562238e-05, 6.6092621e-05, 6.7611906e-05, 6.9120178e-05, 7.0617375e-05, 7.2103377e-05, 7.3578141e-05, 7.5041745e-05, 7.6494342e-05, 7.7936071e-05, 7.9367003e-05, 8.0787146e-05, 8.2196519e-05, 8.3595214e-05, 8.4983415e-05, 8.6361364e-05, 8.7729284e-05, 8.9087323e-05, 9.0435547e-05, 9.1773977e-05, 9.3102624e-05, 9.4421503e-05, 9.5730613e-05, 9.7029950e-05, 9.8319527e-05, 9.9599403e-05, 1.0086968e-04, 1.0213049e-04, 1.0338190e-04, 1.0462399e-04, 1.0585679e-04, 1.0708039e-04, 1.0829489e-04, 1.0950047e-04, 1.1069729e-04, 1.1188546e-04, 1.1306505e-04, 1.1423608e-04, 1.1539854e-04, 1.1655246e-04, 1.1769788e-04, 1.1883484e-04, 1.1996337e-04, 1.2108348e-04, 1.2219519e-04, 1.2329854e-04, 1.2439358e-04, 1.2548035e-04, 1.2655889e-04, 1.2762926e-04, 1.2869153e-04, 1.2974578e-04, 1.3079213e-04, 1.3183066e-04, 1.3286144e-04, 1.3388452e-04, 1.3489995e-04, 1.3590780e-04, 1.3690816e-04, 1.3790116e-04, 1.3888688e-04, 1.3986539e-04, 1.4083674e-04, 1.4180095e-04, 1.4275807e-04, 1.4370813e-04, 1.4465117e-04, 1.4558723e-04, 1.4651633e-04, 1.4743849e-04, 1.4835375e-04, 1.4926214e-04, 1.5016370e-04, 1.5105845e-04, 1.5194643e-04, 1.5282766e-04, 1.5370221e-04, 1.5457014e-04, 1.5543153e-04, 1.5628642e-04, 1.5713487e-04, 1.5797690e-04, 1.5881257e-04, 1.5964193e-04, 1.6046506e-04, 1.6128200e-04, 1.6209283e-04, 1.6289758e-04, 1.6369630e-04, 1.6448905e-04, 1.6527588e-04, 1.6605686e-04, 1.6683205e-04, 1.6760149e-04, 1.6836524e-04, 1.6912336e-04, 1.6987590e-04, 1.7062292e-04, 1.7136444e-04, 1.7210048e-04, 1.7283108e-04, 1.7355626e-04, 1.7427607e-04, 1.7499054e-04, 1.7569971e-04, 1.7640360e-04, 1.7710224e-04, 1.7779565e-04, 1.7848387e-04, 1.7916693e-04, 1.7984487e-04, 1.8051774e-04, 1.8118556e-04, 1.8184837e-04, 1.8250621e-04, 1.8315911e-04, 1.8380712e-04, 1.8445028e-04, 1.8508862e-04, 1.8572218e-04, 1.8635100e-04, 1.8697513e-04, 1.8759461e-04, 1.8820947e-04, 1.8881974e-04, 1.8942547e-04, 1.9002666e-04, 1.9062337e-04, 1.9121564e-04, 1.9180350e-04, 1.9238699e-04, 1.9296612e-04, 1.9354092e-04, 1.9411144e-04, 1.9467770e-04, 1.9523974e-04, 1.9579759e-04, 1.9635130e-04, 1.9690089e-04, 1.9744638e-04, 1.9798782e-04, 1.9852524e-04, 1.9905866e-04, 1.9958810e-04, 2.0011359e-04, 2.0063514e-04, 2.0115278e-04, 2.0166654e-04, 2.0217643e-04, 2.0268247e-04, 2.0318467e-04, 2.0368307e-04, 2.0417767e-04, 2.0466852e-04, 2.0515563e-04, 2.0563902e-04, 2.0611873e-04, 2.0659477e-04, 2.0706716e-04, 2.0753594e-04, 2.0800113e-04, 2.0846276e-04, 2.0892087e-04, 2.0937546e-04, 2.0982658e-04, 2.1027426e-04, 2.1071852e-04, 2.1115940e-04, 2.1159693e-04, 2.1203114e-04, 2.1246205e-04, 2.1288971e-04, 2.1331414e-04, 2.1373538e-04, 2.1415345e-04, 2.1456839e-04, 2.1498022e-04, 2.1538897e-04, 2.1579467e-04, 2.1619735e-04, 2.1659704e-04, 2.1699376e-04, 2.1738753e-04, 2.1777837e-04, 2.1816632e-04, 2.1855140e-04, 2.1893363e-04, 2.1931304e-04, 2.1968963e-04, 2.2006344e-04, 2.2043447e-04, 2.2080276e-04, 2.2116833e-04, 2.2153118e-04, 2.2189135e-04, 2.2224884e-04, 2.2260368e-04, 2.2295589e-04, 2.2330550e-04, 2.2365251e-04, 2.2399694e-04, 2.2433880e-04, 2.2467812e-04, 2.2501491e-04, 2.2534919e-04, 2.2568096e-04, 2.2601024e-04, 2.2633704e-04, 2.2666137e-04, 2.2698324e-04, 2.2730267e-04, 2.2761966e-04, 2.2793424e-04, 2.2824640e-04, 2.2855617e-04, 2.2886356e-04, 2.2916858e-04, 2.2947125e-04, 2.2977158e-04, 2.3006959e-04, 2.3036529e-04, 2.3065871e-04, 2.3094985e-04, 2.3123873e-04, 2.3152538e-04, 2.3180981e-04, 2.3209203e-04, 2.3237206e-04, 2.3264992e-04, 2.3292563e-04, 2.3319922e-04, 2.3347069e-04, 2.3374008e-04, 2.3400738e-04, 2.3427263e-04, 2.3453585e-04, 2.3479705e-04, 2.3505626e-04, 2.3531348e-04, 2.3556875e-04, 2.3582207e-04, 2.3607347e-04, 2.3632296e-04, 2.3657057e-04, 2.3681631e-04, 2.3706020e-04, 2.3730225e-04, 2.3754249e-04, 2.3778092e-04, 2.3801756e-04, 2.3825243e-04, 2.3848554e-04, 2.3871689e-04, 2.3894651e-04, 2.3917441e-04, 2.3940061e-04, 2.3962510e-04, 2.3984792e-04, 2.4006905e-04, 2.4028852e-04, 2.4050634e-04, 2.4072252e-04, 2.4093707e-04, 2.4114999e-04, 2.4136131e-04, 2.4157102e-04, 2.4177915e-04, 2.4198569e-04, 2.4219065e-04, 2.4239406e-04, 2.4259590e-04, 2.4279620e-04, 2.4299497e-04, 2.4319221e-04, 2.4338794e-04, 2.4358217e-04, 2.4377491e-04, 2.4396617e-04, 2.4415596e-04, 2.4434429e-04, 2.4453118e-04, 2.4471663e-04, 2.4490067e-04, 2.4508329e-04, 2.4526450e-04, 2.4544433e-04, 2.4562278e-04, 2.4579985e-04, 2.4597557e-04, 2.4614994e-04, 2.4632297e-04, 2.4649467e-04, 2.4666505e-04, 2.4683412e-04, 2.4700189e-04, 2.4716838e-04, 2.4733357e-04, 2.4749750e-04, 2.4766018e-04, 2.4782160e-04, 2.4798178e-04, 2.4814073e-04, 2.4829846e-04, 2.4845498e-04, 2.4861030e-04, 2.4876443e-04, 2.4891738e-04, 2.4906916e-04, 2.4921978e-04, 2.4936925e-04, 2.4951757e-04, 2.4966476e-04, 2.4981082e-04, 2.4995576e-04, 2.5009960e-04, 2.5024233e-04, 2.5038396e-04, 2.5052451e-04, 2.5066398e-04, 2.5080238e-04, 2.5093971e-04, 2.5107599e-04, 2.5121121e-04, 2.5134539e-04, 2.5147854e-04, 2.5161066e-04, 2.5174175e-04, 2.5187183e-04, 2.5200089e-04, 2.5212895e-04, 2.5225601e-04, 2.5238208e-04, 2.5250716e-04, 2.5263126e-04, 2.5275438e-04, 2.5287654e-04, 2.5299774e-04, 2.5311798e-04, 2.5323727e-04, 2.5335562e-04, 2.5347303e-04, 2.5358951e-04, 2.5370507e-04, 2.5381972e-04, 2.5393345e-04, 2.5404629e-04, 2.5415822e-04, 2.5426926e-04, 2.5437942e-04, 2.5448870e-04, 2.5459711e-04, 2.5470466e-04, 2.5481135e-04, 2.5491719e-04, 2.5502219e-04, 2.5512636e-04, 2.5522969e-04, 2.5533221e-04, 2.5543392e-04, 2.5553482e-04, 2.5563492e-04, 2.5573423e-04, 2.5583276e-04, 2.5593052e-04, 2.5602751e-04, 2.5612374e-04, 2.5621922e-04, 2.5631396e-04, 2.5640796e-04, 2.5650123e-04, 2.5659377e-04, 2.5668561e-04, 2.5677673e-04, 2.5686715e-04, 2.5695687e-04, 2.5704591e-04, 2.5713426e-04, 2.5722194e-04, 2.5730895e-04, 2.5739529e-04, 2.5748097e-04, 2.5756601e-04, 2.5765040e-04, 2.5773415e-04, 2.5781727e-04, 2.5789976e-04, 2.5798162e-04, 2.5806287e-04, 2.5814351e-04, 2.5822354e-04, 2.5830297e-04, 2.5838179e-04, 2.5846002e-04, 2.5853766e-04, 2.5861471e-04, 2.5869117e-04, 2.5876705e-04, 2.5884235e-04, 2.5891708e-04, 2.5899123e-04, 2.5906481e-04, 2.5913782e-04, 2.5921027e-04, 2.5928215e-04, 2.5935348e-04, 2.5942424e-04, 2.5949445e-04, 2.5956410e-04, 2.5963321e-04, 2.5970176e-04, 2.5976977e-04, 2.5983724e-04, 2.5990416e-04, 2.5997055e-04, 2.6003641e-04, 2.6010173e-04, 2.6016653e-04, 2.6023080e-04, 2.6029455e-04, 2.6035779e-04, 2.6042051e-04, 2.6048273e-04, 2.6054443e-04, 2.6060564e-04, 2.6066635e-04, 2.6072657e-04, 2.6078630e-04, 2.6084555e-04, 2.6090431e-04, 2.6096260e-04, 2.6102041e-04, 2.6107776e-04, 2.6113464e-04, 2.6119106e-04, 2.6124702e-04, 2.6130253e-04, 2.6135758e-04, 2.6141219e-04, 2.6146636e-04, 2.6152009e-04, 2.6157338e-04, 2.6162624e-04, 2.6167866e-04, 2.6173066e-04, 2.6178224e-04, 2.6183340e-04, 2.6188415e-04, 2.6193447e-04, 2.6198439e-04, 2.6203390e-04, 2.6208300e-04, 2.6213169e-04, 2.6217999e-04, 2.6222788e-04, 2.6227537e-04, 2.6232247e-04, 2.6236917e-04, 2.6241549e-04, 2.6246141e-04, 2.6250694e-04, 2.6255208e-04, 2.6259684e-04, 2.6264122e-04, 2.6268522e-04, 2.6272883e-04, 2.6277208e-04, 2.6281494e-04, 2.6285743e-04, 2.6289956e-04, 2.6294131e-04, 2.6298270e-04, 2.6302372e-04, 2.6306439e-04, 2.6310469e-04, 2.6314463e-04, 2.6318422e-04, 2.6322346e-04, 2.6326235e-04, 2.6330089e-04, 2.6333908e-04, 2.6337693e-04, 2.6341444e-04, 2.6345162e-04, 2.6348846e-04, 2.6352497e-04, 2.6356114e-04, 2.6359700e-04, 2.6363253e-04, 2.6366774e-04, 2.6370264e-04, 2.6373722e-04, 2.6377149e-04, 2.6380545e-04, 2.6383911e-04, 2.6387247e-04, 2.6390553e-04, 2.6393829e-04, 2.6397076e-04, 2.6400294e-04, 2.6403484e-04, 2.6406645e-04, 2.6409778e-04, 2.6412884e-04, 2.6415962e-04, 2.6419012e-04, 2.6422036e-04, 2.6425033e-04, 2.6428003e-04, 2.6430948e-04, 2.6433866e-04, 2.6436758e-04, 2.6439625e-04, 2.6442466e-04, 2.6445282e-04, 2.6448073e-04, 2.6450839e-04, 2.6453580e-04, 2.6456297e-04, 2.6458989e-04, 2.6461657e-04, 2.6464300e-04, 2.6466920e-04, 2.6469516e-04, 2.6472088e-04, 2.6474637e-04, 2.6477162e-04, 2.6479664e-04, 2.6482143e-04, 2.6484600e-04, 2.6487033e-04, 2.6489443e-04, 2.6491831e-04, 2.6494197e-04, 2.6496540e-04, 2.6498861e-04, 2.6501159e-04, 2.6503436e-04, 2.6505691e-04, 2.6507924e-04, 2.6510135e-04, 2.6512325e-04, 2.6514493e-04, 2.6516640e-04, 2.6518766e-04, 2.6520870e-04, 2.6522953e-04, 2.6525015e-04, 2.6527057e-04, 2.6529078e-04, 2.6531077e-04, 2.6533057e-04, 2.6535016e-04, 2.6536955e-04, 2.6538874e-04, 2.6540772e-04, 2.6542651e-04, 2.6544510e-04, 2.6546349e-04, 2.6548168e-04, 2.6549968e-04, 2.6551749e-04, 2.6553510e-04, 2.6555252e-04, 2.6556975e-04, 2.6558680e-04, 2.6560365e-04, 2.6562032e-04, 2.6563681e-04, 2.6565311e-04, 2.6566923e-04, 2.6568517e-04, 2.6570093e-04, 2.6571650e-04, 2.6573191e-04, 2.6574713e-04, 2.6576218e-04, 2.6577705e-04, 2.6579176e-04, 2.6580628e-04, 2.6582064e-04, 2.6583483e-04, 2.6584884e-04, 2.6586269e-04, 2.6587637e-04, 2.6588988e-04, 2.6590322e-04, 2.6591640e-04, 2.6592941e-04, 2.6594225e-04, 2.6595494e-04, 2.6596745e-04, 2.6597981e-04, 2.6599200e-04, 2.6600402e-04, 2.6601589e-04, 2.6602759e-04, 2.6603913e-04, 2.6605051e-04, 2.6606172e-04, 2.6607278e-04, 2.6608368e-04, 2.6609441e-04, 2.6610499e-04, 2.6611540e-04, 2.6612566e-04, 2.6613576e-04, 2.6614571e-04, 2.6615550e-04, 2.6616513e-04, 2.6617461e-04, 2.6618394e-04, 2.6619311e-04, 2.6620213e-04, 2.6621101e-04, 2.6621973e-04, 2.6622831e-04, 2.6623674e-04, 2.6624503e-04, 2.6625317e-04, 2.6626118e-04, 2.6626904e-04, 2.6627676e-04, 2.6628434e-04, 2.6629179e-04, 2.6629910e-04, 2.6630628e-04, 2.6631332e-04, 2.6632024e-04, 2.6632703e-04, 2.6633369e-04, 2.6634023e-04, 2.6634665e-04, 2.6635294e-04, 2.6635911e-04, 2.6636517e-04, 2.6637111e-04, 2.6637693e-04, 2.6638264e-04, 2.6638824e-04, 2.6639373e-04, 2.6639911e-04, 2.6640439e-04, 2.6640955e-04, 2.6641461e-04, 2.6641957e-04, 2.6642443e-04, 2.6642919e-04, 2.6643384e-04, 2.6643840e-04, 2.6644286e-04, 2.6644722e-04, 2.6645149e-04, 2.6645566e-04, 2.6645974e-04, 2.6646373e-04, 2.6646762e-04, 2.6647142e-04, 2.6647513e-04, 2.6647876e-04, 2.6648229e-04, 2.6648573e-04, 2.6648909e-04, 2.6649236e-04, 2.6649554e-04, 2.6649864e-04, 2.6650165e-04, 2.6650458e-04, 2.6650742e-04, 2.6651018e-04, 2.6651286e-04, 2.6651546e-04, 2.6651798e-04, 2.6652042e-04, 2.6652278e-04, 2.6652507e-04, 2.6652727e-04, 2.6652941e-04, 2.6653146e-04, 2.6653345e-04, 2.6653536e-04, 2.6653720e-04},
- // continuous = true,
- // nFuture=0,
- // nPast=500);
-end RailIrregularities;
diff --git a/Noise 1.0 Beta.1/Examples/Utilities/RailIrregularities/package.order b/Noise 1.0 Beta.1/Examples/Utilities/RailIrregularities/package.order
deleted file mode 100644
index e69de29b..00000000
diff --git a/Noise 1.0 Beta.1/Examples/Utilities/package.order b/Noise 1.0 Beta.1/Examples/Utilities/package.order
deleted file mode 100644
index 58d96b9b..00000000
--- a/Noise 1.0 Beta.1/Examples/Utilities/package.order
+++ /dev/null
@@ -1 +0,0 @@
-RailIrregularities
diff --git a/Noise 1.0 Beta.1/Examples/package.mo b/Noise 1.0 Beta.1/Examples/package.mo
deleted file mode 100644
index d0ae4020..00000000
--- a/Noise 1.0 Beta.1/Examples/package.mo
+++ /dev/null
@@ -1,4 +0,0 @@
-within Noise;
-package Examples "Examples for the Noise library"
-extends Modelica.Icons.ExamplesPackage;
-end Examples;
diff --git a/Noise 1.0 Beta.1/Examples/package.order b/Noise 1.0 Beta.1/Examples/package.order
deleted file mode 100644
index 09b4ce8b..00000000
--- a/Noise 1.0 Beta.1/Examples/package.order
+++ /dev/null
@@ -1,8 +0,0 @@
-SignalBasedNoise
-SignalInterpolation
-FrequencyShaping
-Interpolation
-Correlations
-Derivatives
-RailIrregularities
-InterpolateRandomNumbers
diff --git a/Noise 1.0 Beta.1/Generators/package.mo b/Noise 1.0 Beta.1/Generators/package.mo
deleted file mode 100644
index b54070ba..00000000
--- a/Noise 1.0 Beta.1/Generators/package.mo
+++ /dev/null
@@ -1,9 +0,0 @@
-within Noise;
-package Generators "Additional random number generators"
- extends Modelica.Icons.Package;
-
- annotation (Icon(graphics={ Line(
- points={{-90,-54},{-50,-54},{-50,54},{50,54},{50,-54},{84,-54}},
- color={0,0,0},
- smooth=Smooth.None)}));
-end Generators;
diff --git a/Noise 1.0 Beta.1/Generators/package.order b/Noise 1.0 Beta.1/Generators/package.order
deleted file mode 100644
index e69de29b..00000000
diff --git a/Noise 1.0 Beta.1/Interpolators/Constant/package.mo b/Noise 1.0 Beta.1/Interpolators/Constant/package.mo
deleted file mode 100644
index 43609b4a..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Constant/package.mo
+++ /dev/null
@@ -1,74 +0,0 @@
-within Noise.Interpolators;
-package Constant "Constant interpolation"
- extends Utilities.Interfaces.PartialInterpolator(
- final continuous=false,
- final nFuture=0,
- final nPast=0,
- final varianceFactor=1,
- final smoothness=-1);
-
-
- redeclare function extends interpolate
- "Constant interpolation in a buffer of random values"
- algorithm
- y := buffer[if nBuffer == 1 then 1 else integer(offset) + 1];
- annotation(Inline=true, Documentation(info="
-Syntax
-y = Constant.interpolate(buffer,offset);
-Description
-Interpolate in buffer by using constant interpolation. Input argument offset is a Real number marking the point at which interpolation shall take place. offset=0 is the first buffer value buffer[1]. offset=size(buffer,1)-1 is the last buffer value buffer[size(buffer,1)]. It is required that 0 ≤ offset < size(buffer,1)-1. If the buffer has length 1, the function always returns y=buffer[1]. Otherwise the function returns y = buffer[integer(offset)+1].
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- end interpolate;
-
-
- annotation (Documentation(info="
-
-This Interpolation package provides constant interpolation in a buffer.
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"), Icon(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}),
- graphics={Line(
- points={{-78,-48},{-24,-48},{-24,-8},{28,-8},{28,52},{78,52}},
- color={0,0,0},
- smooth=Smooth.None)}));
-end Constant;
diff --git a/Noise 1.0 Beta.1/Interpolators/Constant/package.order b/Noise 1.0 Beta.1/Interpolators/Constant/package.order
deleted file mode 100644
index b5957de2..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Constant/package.order
+++ /dev/null
@@ -1 +0,0 @@
-interpolate
diff --git a/Noise 1.0 Beta.1/Interpolators/FirstOrder/package.mo b/Noise 1.0 Beta.1/Interpolators/FirstOrder/package.mo
deleted file mode 100644
index 672b5090..00000000
--- a/Noise 1.0 Beta.1/Interpolators/FirstOrder/package.mo
+++ /dev/null
@@ -1,57 +0,0 @@
-within Noise.Interpolators;
-package FirstOrder "A linear first order filter (k / (Ts + 1))"
- extends Utilities.Interfaces.PartialInterpolatorWithKernel(final continuous=true,
- final nFuture=0,
- nPast=5,
- varianceFactor=0.900004539919624,
- suggestedSamplePeriod=0.1);
-
- constant Real k=1 "Gain";
- constant Modelica.SIunits.Period T=0.01 "Time Constant";
-
-
- redeclare function extends kernel
- "Kernel for first-order ideal low pass (k / (Ts + 1))"
-protected
- Real a;
- Real b;
- algorithm
-
- // Transfer function:
- // G = k / (Ts + 1)
- // = b / ( s + a) => b = k/T, a = 1/T
- b := k/T;
- a := 1/T;
-
- // Impulse response:
- // h = b * e^(-at) for t >= 0
- //
- // Step response:
- // h = b/a*(1-e^(-at)) for t >= 0
- h := if t < 0 then 0 else b/a * (1-exp(-a*t));
-
- annotation(Inline=true);
- end kernel;
-
-
- redeclare function extends der_kernel_offset
-protected
- function d = der(kernel, t);
- algorithm
- h := d(t);
- end der_kernel_offset;
-
-
- redeclare function extends interpolate
-
- annotation(Inline=true,
- derivative(order=1) = der_interpolate);
- end interpolate;
-
-
-annotation (Icon(graphics={
- Line(
- points={{-90,-48},{-22,-48},{-22,-48},{6,46},{88,46}},
- color={0,0,0},
- smooth=Smooth.Bezier)}));
-end FirstOrder;
diff --git a/Noise 1.0 Beta.1/Interpolators/FirstOrder/package.order b/Noise 1.0 Beta.1/Interpolators/FirstOrder/package.order
deleted file mode 100644
index 704f26f5..00000000
--- a/Noise 1.0 Beta.1/Interpolators/FirstOrder/package.order
+++ /dev/null
@@ -1,5 +0,0 @@
-k
-T
-kernel
-der_kernel_offset
-interpolate
diff --git a/Noise 1.0 Beta.1/Interpolators/Linear/der_interpolate.mo b/Noise 1.0 Beta.1/Interpolators/Linear/der_interpolate.mo
deleted file mode 100644
index 8a39ae70..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Linear/der_interpolate.mo
+++ /dev/null
@@ -1,63 +0,0 @@
-within Noise.Interpolators.Linear;
-function der_interpolate
- extends Modelica.Icons.Function;
- input Real buffer[:] "Buffer of random numbers";
- input Real offset "Offset from buffer start (0..size(buffer)-1";
- input Real samplePeriod = 1 "The sample period of the noise buffer";
- input Real der_buffer[size(buffer,1)] "Derivatives of buffer values";
- input Real der_offset "Derivative of offset value";
- input Real der_samplePeriod "Derivative of samplePeriod (unused)";
- output Real der_y "Interpolated value at position offset";
-protected
- Integer ind "Index of buffer element just before offset";
- Real der_y1 "Value of buffer element just before offset";
- Real der_y2 "Value of buffer element just after offset";
- Integer nBuffer = size(buffer,1);
-algorithm
- // For a general kernel based interpolation:
- // y = sum( (K(-o) * b[i]) )
- // y' = sum( (K(-o) * b[i])' )
- // = sum( K(-o)' * b[i] + K(o) * b[i]' )
- // = sum( -dK/do*o'* b[i] + K(o) * b[i]' )
- // = sum( -dK/do * b[i] ) * o'
- // + sum( K(o) * b[i]' )
-
- // We need to interpolate only between two values
- if offset >= nBuffer - nFuture and offset <= (1+1e-6)*(nBuffer - nFuture) then
- ind :=nBuffer - 1;
- else
- assert(offset >= nPast and offset < nBuffer - nFuture,
- "offset out of range (offset=" + String(offset) + ", nBuffer="+String(nBuffer)+")");
- ind := integer(offset) + 1;
- end if;
- der_y1 := der_buffer[ind];
- der_y2 := der_buffer[ind+1];
- der_y := (buffer[ind+1] - buffer[ind]) * der_offset
- + der_y1 + (der_y2-der_y1)*(offset-ind+1);
- annotation (Documentation(info="
-Syntax
-der_y = Linear.der_interpolate(buffer,offset,der_buffer,der_offset);
-Description
-Determine the derivative of a signal interpolated linearly in a buffer (see interpolate). Input argument offset is a Real number marking the point at which interpolation shall take place. Input arguments der_buffer and der_offset are the derivatives of the input arguments buffer and offset. This function is used as derivative of the interpolate function. Please see the description there for an introduction to the interpolation method used and specific remerks in the buffer and offset values.
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end der_interpolate;
diff --git a/Noise 1.0 Beta.1/Interpolators/Linear/package.mo b/Noise 1.0 Beta.1/Interpolators/Linear/package.mo
deleted file mode 100644
index eb32e370..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Linear/package.mo
+++ /dev/null
@@ -1,88 +0,0 @@
-within Noise.Interpolators;
-package Linear "Linear interpolation"
- extends Utilities.Interfaces.PartialInterpolator(
- final continuous=true,
- final nFuture=1,
- final nPast=0,
- final varianceFactor=2/3,
- final smoothness=0);
-
-
- redeclare replaceable function extends interpolate
- "Linear interpolation in a buffer of random values"
-protected
- Integer ind "Index of buffer element just before offset";
- Real y1 "Value of buffer element just before offset";
- Real y2 "Value of buffer element just after offset";
- Real offset2;
- algorithm
- // Ensure that offset is in assumed range
- assert(offset >= 0 and offset < nBuffer-1,
- "offset out of range (offset=" + String(offset) + ", nBuffer="+String(nBuffer)+")");
-
- // We need to interpolate only between two values
- ind := integer(offset) + 1;
- y1 := buffer[ind];
- y2 := buffer[ind+1];
- y := y1 + (y2-y1)*(offset-ind+1);
-
- annotation(derivative(order=1) = der_interpolate, Documentation(info="
-Syntax
-y = Linear.interpolate(buffer,offset);
-Description
-Interpolate in buffer by using linear interpolation. Input argument offset is a Real number marking the point at which interpolation shall take place. offset=0 is the first buffer value buffer[1]. offset=size(buffer,1)-1 is the last buffer value buffer[size(buffer,1)]. It is required that 0 ≤ offset < size(buffer,1)-1. The function returns the lineraly interpolated value. In order to avoid issues at the end of the buffer (where a minimally too large offset value triggers an assert), it is best to make the buffer one element larger as needed. For example, if the buffer is filled with a sample period of 1 ms and every 100 samples an event occurs, then the buffer should have length 102 for the samples 0 ms, 1 ms, 2 ms, ...., 100 ms, 101 ms.
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- end interpolate;
-
-
- annotation (Documentation(info="
-
-This Interpolation package provides linear interpolation in a buffer.
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"), Icon(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}),
- graphics={Line(
- points={{-86,-48},{-26,-48},{26,46},{92,46}},
- color={0,0,0},
- smooth=Smooth.None)}));
-end Linear;
diff --git a/Noise 1.0 Beta.1/Interpolators/Linear/package.order b/Noise 1.0 Beta.1/Interpolators/Linear/package.order
deleted file mode 100644
index 1144ed34..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Linear/package.order
+++ /dev/null
@@ -1,2 +0,0 @@
-interpolate
-der_interpolate
diff --git a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_interpolate.mo b/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_interpolate.mo
deleted file mode 100644
index ba8379d1..00000000
--- a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_interpolate.mo
+++ /dev/null
@@ -1,54 +0,0 @@
-within Noise.Interpolators.SmoothIdealLowPass;
-function der_interpolate "Interpolates the buffer using a replaceable kernel"
- extends Modelica.Icons.Function;
- input Real buffer[:] "Buffer of random numbers";
- input Real offset "Offset from buffer start (0..size(buffer)-1";
- input Real samplePeriod = 1 "The sample period of the noise buffer";
- input Real der_buffer[size(buffer,1)] "Derivatives of buffer values";
- input Real der_offset "Derivative of offset value";
- input Real der_samplePeriod "Derivative of samplePeriod (unused)";
- output Real der_y "Interpolated value at position offset";
-algorithm
- // For a general kernel based interpolation:
- // y = sum( (K(-o) * b[i]) )
- // y' = sum( (K(-o) * b[i])' )
- // = sum( K(-o)' * b[i] + K(o) * b[i]' )
- // = sum( -dK/do*o'* b[i] + K(o) * b[i]' )
- // = sum( -dK/do * b[i] ) * o'
- // + sum( K(o) * b[i]' )
-
- // Initialize the convolution algorithm
- der_y := 0;
-
- // Calculate weighted sum over -nPast...nFuture random samples
- for i in -nPast:nFuture loop
- der_y := der_y + der_kernel_offset(t=mod(offset,1)-i) * buffer[integer(offset)+i+1] * der_offset
- + kernel( t=mod(offset,1)-i) * der_buffer[integer(offset)+i+1];
- end for;
- annotation (Documentation(info="
-Syntax
-der_y = SmoothIdealLowPass.der_interpolate(buffer,offset,der_buffer,der_offset);
-Description
-Determine the derivative of a signal interpolated smoothly in a buffer (see interpolate). Input argument offset is a Real number marking the point at which interpolation shall take place. Input arguments der_buffer and der_offset are the derivatives of the input arguments buffer and offset. This function is used as derivative of the interpolate function. Please see the description there for an introduction to the interpolation method used and specific remerks in the buffer and offset values.
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end der_interpolate;
diff --git a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_kernel_offset.mo b/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_kernel_offset.mo
deleted file mode 100644
index 78de2352..00000000
--- a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/der_kernel_offset.mo
+++ /dev/null
@@ -1,37 +0,0 @@
-within Noise.Interpolators.SmoothIdealLowPass;
-function der_kernel_offset
- input Real t "The (scaled) time for sampling period=1";
- input Modelica.SIunits.Frequency f=1/2 "The cut-off frequency of the filter";
- output Real h "The impulse response of the convolution filter";
-protected
- function d = der(kernel, t);
-algorithm
- h := d(t,f);
-annotation (Documentation(info="
-Syntax
-der_h = SmoothIdealLowPass.der_kernel_offset(offset);
-Description
-This function defines the derivative of the kernel of the SmoothIdealLowPass interpolation with respect to its input argument offset. This function is used for determining the derivative of the interpolated signal.
-",
- revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end der_kernel_offset;
diff --git a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/kernel.mo b/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/kernel.mo
deleted file mode 100644
index 48512d19..00000000
--- a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/kernel.mo
+++ /dev/null
@@ -1,37 +0,0 @@
-within Noise.Interpolators.SmoothIdealLowPass;
-function kernel "Kernel for ideal low pass (sinc-function)"
- import Modelica_Noise.Math.Special.sinc;
- import Modelica.Constants.pi;
- input Real t "The (scaled) time for sampling period=1";
- input Modelica.SIunits.Frequency f=1/2 "The cut-off frequency of the filter";
- output Real h "The impulse response of the convolution filter";
-algorithm
- h := 2*f*sinc(2*pi*f*t);
- annotation(Inline=true, Documentation(info="
-Syntax
-h = SmoothIdealLowPass.kernel(offset);
-Description
-This function defines the kernel of the SmoothIdealLowPass interpolation. It uses the sinc function with a specified cut-off frequency.
-",
- revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end kernel;
diff --git a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.mo b/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.mo
deleted file mode 100644
index 3bf933dd..00000000
--- a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.mo
+++ /dev/null
@@ -1,150 +0,0 @@
-within Noise.Interpolators;
-package SmoothIdealLowPass "Smooth interpolation (with sinc function)"
- extends Utilities.Interfaces.PartialInterpolator(
- final continuous=true,
- final nFuture=n - 1,
- final nPast=n,
- final varianceFactor=0.979776342307764,
- final smoothness=1);
- constant Integer n = 5 "Number of support points for convolution";
-
-
- redeclare function extends interpolate
- "Smooth interpolation in a buffer of random values (using the sinc-function that approximates an ideal low pass filter)"
-protected
- Real coefficient "The intermediate container for the kernel evaluations";
- algorithm
- // Ensure that offset is in assumed range
- assert(offset >= nPast and offset < nBuffer - nFuture,
- "offset out of range (offset=" + String(offset) + ", nBuffer="+String(nBuffer)+")");
-
- // Initialize the convolution algorithm
- y := 0;
-
- // What is convolution?!
- //
- // We always carry a kernel function along with our time.
- // That means, that the kernel's central point kernel(0) always occurs at
- // the current time point!
- // Since we are working with an offset instead of the time directly,
- // the kernel's central point must occur at the current offset.
- //
- // See the following diagram:
- // (In our offset space, assume that dt=1 and t=offset.)
- //
- // t-2dt t t+2dt
- // + - + - + - + - + - + - + - + - + -> simulation time
- // t-3dt t-1dt t+1dt t+3dt
- // |
- //
- // 1 -| ^ kernel(delta_t)
- // | / \
- // | _ / \ _
- // | -3/ \-2 -1/ 0 \1 2/ \3
- // 0 -+ - + - + - + - + - + - + - + - + -> phase
- // | | | \ / | | \ / |
- // | V V
- // delta_t/dt <>
- // |
- // Now, we have some random samples, which are given at discrete points.
- // In our offset coordinates, these are given at integer offset values.
- // |
- // | | | | | | | | dt
- // | /
- // + + + + + + + +<->+ offset
- // -3 -2 -1 0 1 2 3
- //
- // states_in _________________^___^___^___^___^___^___^
- // iterations
- // until -n +1 +1 +1 +1 +1 +1
- //
- // Convolution: filter = sum( signal(time) * Kernel(phase*pi) )
- // time = sample + instance
- // phase = sample - delta_t/dt
- // sample = -2 .. 3
- //
- // Loop over 2n support points for the convolution = sum( random(i)*kernel(offset-i) )
- // The random number is for time = (floor(t/dt) * dt + i * dt)
- // The kernel result is for time = t - (floor(t/dt) * dt + i * dt)
- // or, if sampled: time = t - ( t_last + i * dt)
-
- // Calculate weighted sum over -nPast...nFuture random samples
- for i in -nPast:nFuture loop
-
- // We use the kernel in -i direction to enable step response kernels
- coefficient := kernel(t=mod( offset,1)-i);
-
- // We use the kernel in +i direction for the random samples
- // The +1 accounts for one-based indizes
- y := y + buffer[ integer(offset) +i+1]*coefficient;
-
- // Modelica.Utilities.Streams.print("i=" + String(i) + ", "
- // +"t=" + String(mod(offset,1)+i) + ", "
- // +"k=" + String(coefficient)+ ", "
- // +"o=" + String(offset)+ ", "
- // +"n=" + String(integer(offset)+i));
- end for;
- annotation(derivative(order=1) = der_interpolate, Documentation(info="
-Syntax
-y = SmoothIdealLowPass.interpolate(buffer,offset);
-Description
-Interpolate in buffer by using the sinc function. This is an approximation of an ideal low pass filter that completely blocks frequencies above the cut-off frequency f = 1/T (where T is the sample period with which the buffer was filled). Input argument offset is a Real number marking the point at which interpolation shall take place. offset=0 is the first buffer value buffer[1]. offset=size(buffer,1)-1 is the last buffer value buffer[size(buffer,1)]. It is required that 0 ≤ offset < size(buffer,1)-1. The function returns the interpolated value. The interpolation is continuous with a continuous first derivative. In order to avoid issues at the end of the buffer (where a minimally too large offset value triggers an assert), it is best to make the buffer one element larger as needed. For example, if the buffer is filled with a sample period of 1 ms and every 100 samples an event occurs, then the buffer should have length 102 for the samples 0 ms, 1 ms, 2 ms, ...., 100 ms, 101 ms.
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- end interpolate;
-
-
- annotation (Documentation(info="
-
-This Interpolation package provides smooth interpolation in a buffer
-by approximating an ideal low pass filter (with an infinite steep drop of the
-frequency response at the cut-off frequency) using an interpolation with
-the sinc function over
-a finite number of support points (the ideal low pass filter would require
-an infinite number of support points).
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"), Icon(coordinateSystem(preserveAspectRatio=false, extent={{-100,-100},{100,100}}),
- graphics={Line(
- points={{-90,-50},{-22,-50},{6,44},{88,44}},
- color={0,0,0},
- smooth=Smooth.Bezier)}));
-end SmoothIdealLowPass;
diff --git a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.order b/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.order
deleted file mode 100644
index 0043b570..00000000
--- a/Noise 1.0 Beta.1/Interpolators/SmoothIdealLowPass/package.order
+++ /dev/null
@@ -1,5 +0,0 @@
-n
-interpolate
-der_interpolate
-kernel
-der_kernel_offset
diff --git a/Noise 1.0 Beta.1/Interpolators/StepResponse/kernelVariance.mo b/Noise 1.0 Beta.1/Interpolators/StepResponse/kernelVariance.mo
deleted file mode 100644
index fb1c52cd..00000000
--- a/Noise 1.0 Beta.1/Interpolators/StepResponse/kernelVariance.mo
+++ /dev/null
@@ -1,6 +0,0 @@
-within Noise.Interpolators.StepResponse;
-function kernelVariance "Function to be integrated for the varianceFactor"
- extends Utilities.Interfaces.partialKernel;
-algorithm
- h := (kernel(t) - kernel(t-suggestedSamplePeriod))^2;
-end kernelVariance;
diff --git a/Noise 1.0 Beta.1/Interpolators/StepResponse/package.mo b/Noise 1.0 Beta.1/Interpolators/StepResponse/package.mo
deleted file mode 100644
index 30dfb7fa..00000000
--- a/Noise 1.0 Beta.1/Interpolators/StepResponse/package.mo
+++ /dev/null
@@ -1,53 +0,0 @@
-within Noise.Interpolators;
-package StepResponse "A generic filter using a tabulated step response"
-
-
- extends Utilities.Interfaces.PartialInterpolatorWithKernel(
- continuous = true,
- smoothness = 0,
- suggestedSamplePeriod = (max(T)-min(T)) / (size(T,1)-1),
- nPast = integer(max(T) / suggestedSamplePeriod),
- nFuture = -integer(min(T) / suggestedSamplePeriod),
- varianceFactor = trapz(T, kernelVariance(T)) / suggestedSamplePeriod);
-
- //t = linspace(0,0.2,101); step = Noise.Interpolators.FirstOrder.kernel(t); plotArray(cat(1,Modelica.Math.Vectors.reverse(-t),t),cat(1,Modelica.Math.Vectors.reverse(-step),step))
- constant Real T[:] = linspace(0, 0.2, 101) "Time vector";
- constant Real step[:] = FirstOrder.kernel(T) "Step response data";
- constant Real dstep[:] = cat(1, {(step[2]-step[1])/(T[2]-T[1])}, (step[3:size(T,1)] - step[1:size(T,1)-2]) ./ (T[3:size(T,1)] - T[1:size(T,1)-2]), {(step[end]-step[end-1])/(T[end]-T[end-1])});
-
-
- redeclare function extends kernel "Kernel for a tabulated step response"
- algorithm
- if t <= T[1] then
- h := step[1];
- elseif t >= T[end] then
- h := step[end];
- else
- h := Modelica.Math.Vectors.interpolate(T, step, t);
- end if;
- annotation(Inline=true);
- end kernel;
-
-
-
- redeclare function extends der_kernel_offset
- "Derivative of kernel for a tabulated step response"
- algorithm
- if t <= T[1] then
- h := 0;
- elseif t >= T[end] then
- h := 0;
- else
- h := Modelica.Math.Vectors.interpolate(T, dstep, t);
- end if;
- annotation(Inline=true);
- end der_kernel_offset;
-
-
-
-annotation (Icon(graphics={
- Line(
- points={{-90,-48},{-22,-48},{-22,-48},{6,46},{88,46}},
- color={0,0,0},
- smooth=Smooth.Bezier)}));
-end StepResponse;
diff --git a/Noise 1.0 Beta.1/Interpolators/StepResponse/package.order b/Noise 1.0 Beta.1/Interpolators/StepResponse/package.order
deleted file mode 100644
index 56e37863..00000000
--- a/Noise 1.0 Beta.1/Interpolators/StepResponse/package.order
+++ /dev/null
@@ -1,7 +0,0 @@
-T
-step
-dstep
-kernel
-kernelVariance
-der_kernel_offset
-trapz
diff --git a/Noise 1.0 Beta.1/Interpolators/StepResponse/trapz.mo b/Noise 1.0 Beta.1/Interpolators/StepResponse/trapz.mo
deleted file mode 100644
index 732ffdd9..00000000
--- a/Noise 1.0 Beta.1/Interpolators/StepResponse/trapz.mo
+++ /dev/null
@@ -1,8 +0,0 @@
-within Noise.Interpolators.StepResponse;
-function trapz "Integral of a time signal using trapezium rule"
- input Real[:] T "Time vector";
- input Real[size(T,1)] X "Values vector";
- output Real Y "Integral";
-algorithm
- Y := 0.5 .* sum((X[2:end] + X[1:(end-1)]) .* (T[2:end] - T[1:(end-1)]));
-end trapz;
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.mo b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.mo
deleted file mode 100644
index 5597c820..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.mo
+++ /dev/null
@@ -1,114 +0,0 @@
-within Noise.Interpolators.Utilities.Interfaces;
-partial package PartialInterpolator "Interfaces of an interpolator in a buffer of random numbers"
- extends Modelica.Icons.Package;
- constant Boolean continuous=false
- "=true if interpolation is continuous, otherwise discontinuous";
- constant Integer nFuture(min=0)=0
- "Number of buffer values required in the future (=0 for causal filters)";
- constant Integer nPast(min=0) = 0
- "Number of buffer values required in the past";
- constant Real varianceFactor = 1
- "The factor by which the variance will be scaled, if this interpolation is used";
- constant Integer smoothness = 0
- "The smoothness of the interpolation. =0: continuous, =1: continuous and differentiable, ...";
-
-
- replaceable partial function interpolate
- "Interface of a function to interpolate in a buffer of random numbers"
- extends Modelica.Icons.Function;
- input Real buffer[:] "Buffer of random numbers";
- input Real offset "Offset from buffer start (0..size(buffer)-1";
- input Real samplePeriod = 1 "The sample period of the noise buffer";
- output Real y "Interpolated value at position offset";
-protected
- Integer nBuffer = size(buffer,1) "Size of the buffer";
- annotation (Documentation(info="
-
-This partial function defines the input and output arguments of
-the function to interpolate in a buffer of random values.
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- end interpolate;
-
-
- annotation (Documentation(info="
-
-This partial package defines the elements and function interface of a package
-to interpolate in buffer of random values. It is assumed that at one point in
-time, a buffer is filled with random values. In order to interpolate in the
-buffer, the following constants need to be defined:
-
-
-
-
-Name of constant |
- Description |
-
-continuous |
- = true if interpolation is continuous, otherwise discontinuous |
-
-nFuture |
- = Number of buffer values required at the end of the buffer, in order to
- interpolate at the last time instant for which the buffer values have
- been computed. |
-
-nPast |
- = Number of buffer values required at the beginning of the buffer, in order to
- interpolate at the first time instant for which the buffer values have
- been computed. |
-
-varianceFactor |
- A non-constant interpolation is changing the variance of the interpolated
- random values. varianceFactor is the factor by which the variance of the underlying
- random distribution needs to be multiplied, in order to arrive
- at the variance of the interpolated signal. |
-
-smoothness |
- The smoothness of the interpolation:
- =-1: discontinuous
- = 0: continuous
- = 1: continuous and differentiable |
-
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end PartialInterpolator;
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.order b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.order
deleted file mode 100644
index 767d5803..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolator/package.order
+++ /dev/null
@@ -1,6 +0,0 @@
-continuous
-nFuture
-nPast
-varianceFactor
-smoothness
-interpolate
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/der_interpolate.mo b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/der_interpolate.mo
deleted file mode 100644
index a5b0d69f..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/der_interpolate.mo
+++ /dev/null
@@ -1,30 +0,0 @@
-within Noise.Interpolators.Utilities.Interfaces.PartialInterpolatorWithKernel;
-function der_interpolate "Interpolates the buffer using a replaceable kernel"
- extends Modelica.Icons.Function;
- input Real buffer[:] "Buffer of random numbers";
- input Real offset "Offset from buffer start (0..size(buffer)-1";
- input Real samplePeriod = 1 "The sample period of the noise buffer";
- input Real der_buffer[size(buffer,1)] "Derivatives of buffer values";
- input Real der_offset "Derivative of offset value";
- input Real der_samplePeriod = 1 "The sample period of the noise buffer";
- output Real der_y "Interpolated value at position offset";
-algorithm
- // For a general kernel based interpolation:
- // y = sum( (DK(-o*s) * b[i]) )
- // y' = sum( (DK(-o*s) * b[i])' )
- // = sum( DK(-o*s)' * b[i] + DK(-o*s) * b[i]' )
- // = sum( -dDK/do*o'*s* b[i] + DK(-o*s) * b[i]' )
- // = sum( -dDK/do * b[i] ) * o'*s
- // + sum( DK(-o*s) * b[i]' )
-
- // Initialize the convolution algorithm
- der_y := 0;
-
- // Calculate weighted sum over -nPast...nFuture random samples
- for i in -nPast:nFuture loop
- der_y := der_y + ( - der_kernel_offset(t=(mod(offset,1)-i-1)*samplePeriod)
- + der_kernel_offset(t=(mod(offset,1)-i+0)*samplePeriod)) * buffer[integer(offset)+i+1] * der_offset*samplePeriod
- + ( - kernel( t=(mod(offset,1)-i-1)*samplePeriod)
- + kernel( t=(mod(offset,1)-i+0)*samplePeriod)) * der_buffer[integer(offset)+i+1];
- end for;
-end der_interpolate;
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.mo b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.mo
deleted file mode 100644
index b5c0b7dc..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.mo
+++ /dev/null
@@ -1,108 +0,0 @@
-within Noise.Interpolators.Utilities.Interfaces;
-partial package PartialInterpolatorWithKernel "Generic interpolator interface providing a kernel function"
- extends PartialInterpolator;
-
- constant Real suggestedSamplePeriod = 0
- "The appropriate sample period for this filter";
-
-
- redeclare replaceable function extends interpolate
- "Interpolates the buffer using a replaceable kernel"
-protected
- Real coefficient "The intermediate container for the kernel evaluations";
- algorithm
- // Ensure that offset is in assumed range
- assert(offset >= nPast and offset < nBuffer - nFuture,
- "offset out of range (offset=" + String(offset) + ", nBuffer="+String(nBuffer)+")");
-
- // Initialize the convolution algorithm
- y := 0;
-
- // What is convolution?!
- //
- // We always carry a kernel function along with our time.
- // That means, that the kernel's central point kernel(0) always occurs at
- // the current time point!
- // Since we are working with an offset instead of the time directly,
- // the kernel's central point must occur at the current offset.
- //
- // See the following diagram:
- // (In our offset space, assume that dt=1 and t=offset.)
- //
- // t-2dt t t+2dt
- // + - + - + - + - + - + - + - + - + -> simulation time
- // t-3dt t-1dt t+1dt t+3dt
- // |
- //
- // 1 -| ^ kernel(delta_t)
- // | / \
- // | _ / \ _
- // | -3/ \-2 -1/ 0 \1 2/ \3
- // 0 -+ - + - + - + - + - + - + - + - + -> phase
- // | | | \ / | | \ / |
- // | V V
- // delta_t/dt <>
- // |
- // Now, we have some random samples, which are given at discrete points.
- // In our offset coordinates, these are given at integer offset values.
- // |
- // | | | | | | | | dt
- // | /
- // + + + + + + + +<->+ offset
- // -3 -2 -1 0 1 2 3
- //
- // states_in _________________^___^___^___^___^___^___^
- // iterations
- // until -n +1 +1 +1 +1 +1 +1
- //
- // Convolution: filter = sum( signal(time) * Kernel(phase*pi) )
- // time = sample + instance
- // phase = sample - delta_t/dt
- // sample = -2 .. 3
- //
- // Loop over 2n support points for the convolution = sum( random(i)*kernel(offset-i) )
- // The random number is for time = (floor(t/dt) * dt + i * dt)
- // The kernel result is for time = t - (floor(t/dt) * dt + i * dt)
- // or, if sampled: time = t - ( t_last + i * dt)
-
- // Calculate weighted sum over -nPast...nFuture random samples
- for i in -nPast:nFuture loop
-
- // We use the kernel in -i direction to enable step response kernels
- coefficient := - kernel(t=(mod( offset,1)-i-1)*samplePeriod)
- + kernel(t=(mod( offset,1)-i+0)*samplePeriod);
-
- // We use the kernel in +i direction for the random samples
- // The +1 accounts for one-based indizes
- y := y + buffer[ integer(offset) +i+1]*coefficient;
-
- // Modelica.Utilities.Streams.print("i=" + String(i) + ", "
- // +"t=" + String(mod(offset,1)+i) + ", "
- // +"k=" + String(coefficient)+ ", "
- // +"o=" + String(offset)+ ", "
- // +"n=" + String(integer(offset)+i));
- end for;
- annotation(derivative(order=1) = der_interpolate, Inline=true);
- end interpolate;
-
-
- replaceable partial function kernel "Kernel for interpolation"
- extends partialKernel;
- end kernel;
-
-
- replaceable partial function der_kernel_offset
- "Partial derivative of the kernel with respect to the offset"
- extends partialKernel;
- end der_kernel_offset;
-
-
- annotation (Documentation(info=
- "
-
-For details of the xorshift64* algorithm see
-http://xorshift.di.unimi.it/ .
-
-"), Icon(coordinateSystem(preserveAspectRatio=false, extent={{-100,-100},{100,100}}),
- graphics));
-end PartialInterpolatorWithKernel;
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.order b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.order
deleted file mode 100644
index 6cf0d49b..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/PartialInterpolatorWithKernel/package.order
+++ /dev/null
@@ -1,5 +0,0 @@
-suggestedSamplePeriod
-interpolate
-der_interpolate
-kernel
-der_kernel_offset
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.mo b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.mo
deleted file mode 100644
index 45f5dbfc..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.mo
+++ /dev/null
@@ -1,5 +0,0 @@
-within Noise.Interpolators.Utilities;
-package Interfaces "Interfaces package"
- extends Modelica.Icons.InterfacesPackage;
-
-end Interfaces;
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.order b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.order
deleted file mode 100644
index 4f1ea3e0..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-PartialInterpolator
-PartialInterpolatorWithKernel
-partialKernel
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/partialKernel.mo b/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/partialKernel.mo
deleted file mode 100644
index 2fb4ccd4..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/Interfaces/partialKernel.mo
+++ /dev/null
@@ -1,5 +0,0 @@
-within Noise.Interpolators.Utilities.Interfaces;
-function partialKernel "Interface for convolution kernels"
- input Real t "The (scaled) time for sampling period=1";
- output Real h "The impulse response of the convolution filter";
-end partialKernel;
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/package.mo b/Noise 1.0 Beta.1/Interpolators/Utilities/package.mo
deleted file mode 100644
index ce1a26ec..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/package.mo
+++ /dev/null
@@ -1,4 +0,0 @@
-within Noise.Interpolators;
-package Utilities "Utilities for Interpolators"
-extends Modelica.Icons.UtilitiesPackage;
-end Utilities;
diff --git a/Noise 1.0 Beta.1/Interpolators/Utilities/package.order b/Noise 1.0 Beta.1/Interpolators/Utilities/package.order
deleted file mode 100644
index 8f81df7f..00000000
--- a/Noise 1.0 Beta.1/Interpolators/Utilities/package.order
+++ /dev/null
@@ -1 +0,0 @@
-Interfaces
diff --git a/Noise 1.0 Beta.1/Interpolators/package.mo b/Noise 1.0 Beta.1/Interpolators/package.mo
deleted file mode 100644
index c60030e5..00000000
--- a/Noise 1.0 Beta.1/Interpolators/package.mo
+++ /dev/null
@@ -1,10 +0,0 @@
-within Noise;
-package Interpolators "Additional interpolation packages"
- extends Modelica.Icons.Package;
-
-
- annotation (Icon(graphics={ Line(
- points={{-92,-32},{-52,-32},{-30,48},{30,48},{50,-32},{94,-32}},
- color={0,0,0},
- smooth=Smooth.Bezier)}));
-end Interpolators;
diff --git a/Noise 1.0 Beta.1/Interpolators/package.order b/Noise 1.0 Beta.1/Interpolators/package.order
deleted file mode 100644
index 1b98c423..00000000
--- a/Noise 1.0 Beta.1/Interpolators/package.order
+++ /dev/null
@@ -1,6 +0,0 @@
-Constant
-Linear
-SmoothIdealLowPass
-FirstOrder
-StepResponse
-Utilities
diff --git a/Noise 1.0 Beta.1/Math/binomial.mo b/Noise 1.0 Beta.1/Math/binomial.mo
deleted file mode 100644
index f256cdd9..00000000
--- a/Noise 1.0 Beta.1/Math/binomial.mo
+++ /dev/null
@@ -1,11 +0,0 @@
-within Noise.Math;
-function binomial "Binomial coefficient"
- input Integer n;
- input Integer k;
- output Real b;
-algorithm
- b :=(factorial(n)/factorial(n - k)/factorial(k));
- annotation (Documentation(revisions="
-
Developed 2014 at the DLR Institute of System Dynamics and Control
-"));
-end binomial;
diff --git a/Noise 1.0 Beta.1/Math/factorial.mo b/Noise 1.0 Beta.1/Math/factorial.mo
deleted file mode 100644
index b16417de..00000000
--- a/Noise 1.0 Beta.1/Math/factorial.mo
+++ /dev/null
@@ -1,13 +0,0 @@
-within Noise.Math;
-function factorial "The product of all integer <= the input"
- input Integer n;
- output Integer f;
-algorithm
- f := 1;
- for i in 1:n loop
- f := f*i;
- end for;
- annotation (Documentation(revisions="
-
Developed 2014 at the DLR Institute of System Dynamics and Control
-"));
-end factorial;
diff --git a/Noise 1.0 Beta.1/Math/package.mo b/Noise 1.0 Beta.1/Math/package.mo
deleted file mode 100644
index ef0fb76e..00000000
--- a/Noise 1.0 Beta.1/Math/package.mo
+++ /dev/null
@@ -1,13 +0,0 @@
-within Noise;
-package Math "Mathematical functions use in this library"
- extends Modelica.Icons.Package;
-
-
-annotation (Icon(graphics={ Line(points={{-80,0},{-68.7,34.2},{-61.5,53.1},
- {-55.1,66.4},{-49.4,74.6},{-43.8,79.1},{-38.2,79.8},{-32.6,76.6},{
- -26.9,69.7},{-21.3,59.4},{-14.9,44.1},{-6.83,21.2},{10.1,-30.8},{
- 17.3,-50.2},{23.7,-64.2},{29.3,-73.1},{35,-78.4},{40.6,-80},{46.2,
- -77.6},{51.9,-71.5},{57.5,-61.9},{63.9,-47.2},{72,-24.8},{80,0}},
- color={
- 0,0,0}, smooth=Smooth.Bezier)}));
-end Math;
diff --git a/Noise 1.0 Beta.1/Math/package.order b/Noise 1.0 Beta.1/Math/package.order
deleted file mode 100644
index e5d1b9db..00000000
--- a/Noise 1.0 Beta.1/Math/package.order
+++ /dev/null
@@ -1,2 +0,0 @@
-factorial
-binomial
diff --git a/Noise 1.0 Beta.1/Plots/Distributions/Discrete.mo b/Noise 1.0 Beta.1/Plots/Distributions/Discrete.mo
deleted file mode 100644
index 5c47794d..00000000
--- a/Noise 1.0 Beta.1/Plots/Distributions/Discrete.mo
+++ /dev/null
@@ -1,25 +0,0 @@
-within Noise.Plots.Distributions;
-function Discrete "Plot functions Math.Distributions.Discrete"
- import Noise.Distributions.Discrete;
- input Integer nPoints(min=2) = 1000 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-5, 5, nPoints);
- Real u2[nPoints] = linspace(0, 1, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
- Real y3[nPoints];
-algorithm
- y1 := Discrete.cumulative(u);
- y2 := Discrete.cumulative(u);
- y3 := Discrete.cumulative(u);
- plotArrays(u, [y1,y2,y3], title="Cumulative distribution functions of Discrete distribution",
- legend={"cumulative(u,-3,3)", "cumulative(u,-1,3)", "cumulative(u,1,3)"},id=2);
-
- y1 := Discrete.quantile(u2);
- y2 := Discrete.quantile(u2);
- y3 := Discrete.quantile(u2);
- plotArrays(u2, [y1,y2,y3], title="Inverse cumulative distribution function of Discrete distribution",
- legend={"quantile(u,-3,3)", "quantile(u,-1,3)", "quantile(u,1,3)"}, id=3);
-
- annotation(__Dymola_interactive = true);
-end Discrete;
diff --git a/Noise 1.0 Beta.1/Plots/Distributions/bates.mo b/Noise 1.0 Beta.1/Plots/Distributions/bates.mo
deleted file mode 100644
index 9c264c72..00000000
--- a/Noise 1.0 Beta.1/Plots/Distributions/bates.mo
+++ /dev/null
@@ -1,31 +0,0 @@
-within Noise.Plots.Distributions;
-function bates "Plot functions Math.Distributions.Bates"
- import Noise.Distributions.Bates;
- input Integer nPoints(min=2) = 500 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-4, 4, nPoints);
- Real u2[nPoints] = linspace(0, 1, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
- Real y3[nPoints];
-algorithm
- y1 := Bates.density(u, y_min=-3, y_max=3);
- y2 := Bates.density(u, y_min=-3, y_max=3, n=6);
- y3 := Bates.density(u, y_min=-3, y_max=3, n=2);
- plotArrays(u, [y1,y2,y3], title="Densities of Bates distribution with y_min=-3, y_max=3",
- legend={"n = 12", "n = 6", "n = 2"},id=10);
-
- y1 := Bates.cumulative(u, y_min=-3, y_max=3);
- y2 := Bates.cumulative(u, y_min=-3, y_max=3, n=6);
- y3 := Bates.cumulative(u, y_min=-3, y_max=3, n=2);
- plotArrays(u, [y1,y2,y3], title="Cumulative distribution functions of Bates distributionwith y_min=-3, y_max=3",
- legend={"n = 12", "n = 6", "n = 2"},id=20);
-
- y1 := Bates.quantile(u2, y_min=-3, y_max=3);
- y2 := Bates.quantile(u2, y_min=-3, y_max=3, n=6);
- y3 := Bates.quantile(u2, y_min=-3, y_max=3, n=2);
- plotArrays(u2, [y1,y2,y3], title="Inverse cumulative distribution function of Bates distribution with y_min=-3, y_max=3",
- legend={"n = 12", "n = 6", "n = 2"}, id=30);
-
- annotation(__Dymola_interactive = true);
-end bates;
diff --git a/Noise 1.0 Beta.1/Plots/Distributions/normal.mo b/Noise 1.0 Beta.1/Plots/Distributions/normal.mo
deleted file mode 100644
index 32bb1ca0..00000000
--- a/Noise 1.0 Beta.1/Plots/Distributions/normal.mo
+++ /dev/null
@@ -1,31 +0,0 @@
-within Noise.Plots.Distributions;
-function normal "Plot functions Math.Distributions.Normal"
- import Modelica_Noise.Math.Distributions.Normal;
- input Integer nPoints(min=2) = 1000 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-3, 3, nPoints);
- Real u2[nPoints] = linspace(0.001, 0.999, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
- Real y3[nPoints];
-algorithm
- y1 := Normal.density(u);
- y2 := Normal.density(u, mu= 1);
- y3 := Normal.density(u, mu= 0, sigma= 0.5);
- plotArrays(u, [y1,y2,y3], title="Densities of Normal distribution",
- legend={"density(u,0,1)", "density(u,1,1)", "density(u,0,0.5)"},id=1);
-
- y1 := Normal.cumulative(u);
- y2 := Normal.cumulative(u, mu=1);
- y3 := Normal.cumulative(u, mu=0, sigma= 0.5);
- plotArrays(u, [y1,y2,y3], title="Cumulative distribution functions of Normal distribution",
- legend={"cumulative(u,0,1)", "cumulative(u,1,1)", "cumulative(u,0,0.5)"}, id=10);
-
- y1 := Normal.quantile(u2);
- y2 := Normal.quantile(u2, mu=1);
- y3 := Normal.quantile(u2, mu=0, sigma= 0.5);
- plotArrays(u2, [y1,y2,y3], title="Inverse cumulative distribution function of Normal distribution",
- legend={"quantile(u,0,1)", "quantile(u,1,1)", "quantile(u,0,0.5)"}, id=20);
-
- annotation(__Dymola_interactive = true);
-end normal;
diff --git a/Noise 1.0 Beta.1/Plots/Distributions/package.mo b/Noise 1.0 Beta.1/Plots/Distributions/package.mo
deleted file mode 100644
index c794093a..00000000
--- a/Noise 1.0 Beta.1/Plots/Distributions/package.mo
+++ /dev/null
@@ -1,5 +0,0 @@
-within Noise.Plots;
-package Distributions
- extends Modelica.Icons.Package;
-
-end Distributions;
diff --git a/Noise 1.0 Beta.1/Plots/Distributions/package.order b/Noise 1.0 Beta.1/Plots/Distributions/package.order
deleted file mode 100644
index 65e60eef..00000000
--- a/Noise 1.0 Beta.1/Plots/Distributions/package.order
+++ /dev/null
@@ -1,5 +0,0 @@
-uniform
-normal
-weibull
-bates
-Discrete
diff --git a/Noise 1.0 Beta.1/Plots/Distributions/uniform.mo b/Noise 1.0 Beta.1/Plots/Distributions/uniform.mo
deleted file mode 100644
index 45366f21..00000000
--- a/Noise 1.0 Beta.1/Plots/Distributions/uniform.mo
+++ /dev/null
@@ -1,31 +0,0 @@
-within Noise.Plots.Distributions;
-function uniform "Plot functions Math.Distributions.Uniform"
- import Modelica_Noise.Math.Distributions.Uniform;
- input Integer nPoints(min=2) = 1000 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-5, 5, nPoints);
- Real u2[nPoints] = linspace(0, 1, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
- Real y3[nPoints];
-algorithm
- y1 := Uniform.density(u, u_min=-3, u_max=3);
- y2 := Uniform.density(u, u_min=-1, u_max=3);
- y3 := Uniform.density(u, u_min=1, u_max=3);
- plotArrays(u, [y1,y2,y3], title="Densities of uniform distribution",
- legend={"density(u,-3,3)", "density(u,-1,3)", "density(u,1,3)"},id=1);
-
- y1 := Uniform.cumulative(u, u_min=-3, u_max=3);
- y2 := Uniform.cumulative(u, u_min=-1, u_max=3);
- y3 := Uniform.cumulative(u, u_min=1, u_max=3);
- plotArrays(u, [y1,y2,y3], title="Cumulative distribution functions of uniform distribution",
- legend={"cumulative(u,-3,3)", "cumulative(u,-1,3)", "cumulative(u,1,3)"},id=2);
-
- y1 := Uniform.quantile(u2, y_min=-3, y_max=3);
- y2 := Uniform.quantile(u2, y_min=-1, y_max=3);
- y3 := Uniform.quantile(u2, y_min=1, y_max=3);
- plotArrays(u2, [y1,y2,y3], title="Inverse cumulative distribution function of uniform distribution",
- legend={"quantile(u,-3,3)", "quantile(u,-1,3)", "quantile(u,1,3)"}, id=3);
-
- annotation(__Dymola_interactive = true);
-end uniform;
diff --git a/Noise 1.0 Beta.1/Plots/Distributions/weibull.mo b/Noise 1.0 Beta.1/Plots/Distributions/weibull.mo
deleted file mode 100644
index ddb207e7..00000000
--- a/Noise 1.0 Beta.1/Plots/Distributions/weibull.mo
+++ /dev/null
@@ -1,30 +0,0 @@
-within Noise.Plots.Distributions;
-function weibull "Plot functions Math.Distributions.Weibull"
- import Modelica_Noise.Math.Distributions.Weibull;
- input Integer nPoints(min=2) = 1000 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-1, 3, nPoints);
- Real u2[nPoints] = linspace(0.001, 0.999, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
- Real y3[nPoints];
-algorithm
- y1 := Weibull.density(u, lambda=1.0, k=1);
- y2 := Weibull.density(u, lambda=0.5, k=2);
- y3 := Weibull.density(u, lambda=0.5, k=3);
- plotArrays(u, [y1,y2,y3], title="Densities of Weibull distribution",
- legend={"density(u,1,1)", "density(u,0.5,2)", "density(u,0.5,3)"},id=1);
-
- y1 := Weibull.cumulative(u, lambda=1.0, k=1);
- y2 := Weibull.cumulative(u, lambda=0.5, k=2);
- y3 := Weibull.cumulative(u, lambda=0.5, k=3);
- plotArrays(u, [y1,y2,y3], title="Cumulative distribution functions of Weibull distribution",
- legend={"cumulative(u,1,1)", "cumulative(u,0.5,2)", "cumulative(u,0.5,3)"}, id=10);
-
- y1 := Weibull.quantile(u2, lambda=1.0, k=1);
- y2 := Weibull.quantile(u2, lambda=0.5, k=2);
- y3 := Weibull.quantile(u2, lambda=0.5, k=3);
- plotArrays(u2, [y1,y2,y3], title="Inverse cumulative distribution function of Weibull distribution",
- legend={"quantile(u,1,1)", "quantile(u,0.5,2)", "quantile(u,0.5,3)"}, id=20);
- annotation(__Dymola_interactive = true);
-end weibull;
diff --git a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/normal.mo b/Noise 1.0 Beta.1/Plots/TruncatedDistributions/normal.mo
deleted file mode 100644
index b8cd11c0..00000000
--- a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/normal.mo
+++ /dev/null
@@ -1,28 +0,0 @@
-within Noise.Plots.TruncatedDistributions;
-function normal "Plot functions Math.TruncatedDistributions.Normal"
- import Modelica_Noise.Math.Distributions.Normal;
- import T_Normal = Modelica_Noise.Math.TruncatedDistributions.Normal;
- input Integer nPoints(min=2) = 1000 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-3, 3, nPoints);
- Real u2[nPoints] = linspace(0.001, 0.999, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
-algorithm
- y1 := Normal.density(u);
- y2 := T_Normal.density(u, u_min=-1.5,u_max=1.5);
- plotArrays(u, [y1,y2], title="Densities of Normal distribution",
- legend={"mu=0, sigma=1", "truncated to u_min=-1.5, u_max=1.5"},id=1);
-
- y1 := Normal.cumulative(u);
- y2 := T_Normal.cumulative(u, u_min=-1.5,u_max=1.5);
- plotArrays(u, [y1,y2], title="Cumulative distribution functions of Normal distribution",
- legend={"mu=0, sigma=1", "truncated to u_min=-1.5, u_max=1.5"}, id=10);
-
- y1 := Normal.quantile(u2);
- y2 := T_Normal.quantile(u2, y_min=-1.5,y_max=1.5);
- plotArrays(u2, [y1,y2], title="Inverse cumulative distribution function of Normal distribution",
- legend={"mu=0, sigma=1", "truncated to u_min=-1.5, u_max=1.5"}, id=20);
-
- annotation(__Dymola_interactive = true);
-end normal;
diff --git a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.mo b/Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.mo
deleted file mode 100644
index c947a6ba..00000000
--- a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.mo
+++ /dev/null
@@ -1,8 +0,0 @@
-within Noise.Plots;
-package TruncatedDistributions
- extends Modelica.Icons.Package;
-
-
- annotation (Documentation(info="
-"));
-end TruncatedDistributions;
diff --git a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.order b/Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.order
deleted file mode 100644
index 6213fb3d..00000000
--- a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-uniform
-normal
-weibull
diff --git a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/uniform.mo b/Noise 1.0 Beta.1/Plots/TruncatedDistributions/uniform.mo
deleted file mode 100644
index 33375158..00000000
--- a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/uniform.mo
+++ /dev/null
@@ -1,31 +0,0 @@
-within Noise.Plots.TruncatedDistributions;
-function uniform "Plot functions Math.TruncatedDistributions.Uniform"
- import Modelica_Noise.Math.Distributions.Uniform;
- input Integer nPoints(min=2) = 1000 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-5, 5, nPoints);
- Real u2[nPoints] = linspace(0, 1, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
- Real y3[nPoints];
-algorithm
- y1 := Uniform.density(u, u_min=-3, u_max=3);
- y2 := Uniform.density(u, u_min=-1, u_max=3);
- y3 := Uniform.density(u, u_min=1, u_max=3);
- plotArrays(u, [y1,y2,y3], title="Densities of uniform distribution",
- legend={"density(u,-3,3)", "density(u,-1,3)", "density(u,1,3)"},id=1);
-
- y1 := Uniform.cumulative(u, u_min=-3, u_max=3);
- y2 := Uniform.cumulative(u, u_min=-1, u_max=3);
- y3 := Uniform.cumulative(u, u_min=1, u_max=3);
- plotArrays(u, [y1,y2,y3], title="Cumulative distribution functions of uniform distribution",
- legend={"cumulative(u,-3,3)", "cumulative(u,-1,3)", "cumulative(u,1,3)"},id=2);
-
- y1 := Uniform.quantile(u2, y_min=-3, y_max=3);
- y2 := Uniform.quantile(u2, y_min=-1, y_max=3);
- y3 := Uniform.quantile(u2, y_min=1, y_max=3);
- plotArrays(u2, [y1,y2,y3], title="Inverse cumulative distribution function of uniform distribution",
- legend={"quantile(u,-3,3)", "quantile(u,-1,3)", "quantile(u,1,3)"}, id=3);
-
- annotation(__Dymola_interactive = true);
-end uniform;
diff --git a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/weibull.mo b/Noise 1.0 Beta.1/Plots/TruncatedDistributions/weibull.mo
deleted file mode 100644
index 42e491ff..00000000
--- a/Noise 1.0 Beta.1/Plots/TruncatedDistributions/weibull.mo
+++ /dev/null
@@ -1,28 +0,0 @@
-within Noise.Plots.TruncatedDistributions;
-function weibull "Plot functions Math.TruncatedDistributions.Weibull"
- import Modelica_Noise.Math.Distributions.Weibull;
- import T_Weibull = Modelica_Noise.Math.TruncatedDistributions.Weibull;
- input Integer nPoints(min=2) = 1000 "Number of evaluation points";
-protected
- Real u[nPoints] = linspace(-1, 2, nPoints);
- Real u2[nPoints] = linspace(0.001, 0.999, nPoints);
- Real y1[nPoints];
- Real y2[nPoints];
-algorithm
- y1 := Weibull.density(u, lambda=0.5, k=2);
- y2 := T_Weibull.density(u,u_max=0.8, lambda=0.5, k=2);
- plotArrays(u, [y1,y2], title="Densities of Weibull distribution",
- legend={"lambda=0.5, k=2", "truncated to u_min=0, u_max=0.8"},id=1);
-
- y1 := Weibull.cumulative(u, lambda=0.5, k=2);
- y2 := T_Weibull.cumulative(u, u_max=0.8, lambda=0.5, k=2);
- plotArrays(u, [y1,y2], title="Cumulative distribution functions of Weibull distribution",
- legend={"lambda=0.5, k=2", "truncated to u_min=0, u_max=0.8"}, id=10);
-
- y1 := Weibull.quantile(u2, lambda=0.5, k=2);
- y2 := T_Weibull.quantile(u2, y_max=0.8, lambda=0.5, k=2);
- plotArrays(u2, [y1,y2], title="Inverse cumulative distribution function of Weibull distribution",
- legend={"lambda=0.5, k=2", "truncated to u_min=0, u_max=0.8"}, id=20);
-
- annotation(__Dymola_interactive = true);
-end weibull;
diff --git a/Noise 1.0 Beta.1/Plots/package.mo b/Noise 1.0 Beta.1/Plots/package.mo
deleted file mode 100644
index a5b7f4b2..00000000
--- a/Noise 1.0 Beta.1/Plots/package.mo
+++ /dev/null
@@ -1,7 +0,0 @@
-within Noise;
-package Plots "A package of plotting functions"
- extends Modelica.Icons.InternalPackage;
-
-
-
-end Plots;
diff --git a/Noise 1.0 Beta.1/Plots/package.order b/Noise 1.0 Beta.1/Plots/package.order
deleted file mode 100644
index 0e7e14ae..00000000
--- a/Noise 1.0 Beta.1/Plots/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-special
-Distributions
-TruncatedDistributions
diff --git a/Noise 1.0 Beta.1/Plots/special.mo b/Noise 1.0 Beta.1/Plots/special.mo
deleted file mode 100644
index d8febb34..00000000
--- a/Noise 1.0 Beta.1/Plots/special.mo
+++ /dev/null
@@ -1,35 +0,0 @@
-within Noise.Plots;
-function special "Plot functions Math.Special"
- import Modelica.Utilities.Streams.print;
- import Modelica_Noise.Math.Special;
- input Integer nPoints = 1000;
- input Real erfRange = 3.0;
- input Real sincRange = 20.0;
- input Real normalEps = 1e-5;
-protected
- Real uErf[nPoints] = linspace(-erfRange, erfRange, nPoints);
- Real yErf[nPoints];
- Real yErfc[nPoints];
- Real uErfInv[nPoints];
- Real uErfcInv[nPoints];
- Real r[nPoints] = linspace(normalEps, 1-normalEps, nPoints);
- Real rn[nPoints];
-algorithm
- yErf := Special.erf(uErf);
- plotArray(uErf, yErf, legend="y = erf(u)", id=1);
-
- yErfc := Special.erfc(uErf);
- plotArray(uErf, yErfc, legend="y = erfc(u)", id=2);
-
- uErfInv := Special.erfInv(yErf);
- plotArray(yErf, uErfInv, legend="y = erfInv(u)", id=3);
-
- uErfcInv := Special.erfcInv(yErfc);
- plotArray(yErf, uErfInv, legend="y = erfcInv(u)", id=4);
-
- r :=linspace(-sincRange,sincRange,nPoints);
- rn :=Special.sinc(r);
- plotArray(r,rn,legend="y=sinc(u)",id=5);
-
- annotation(__Dymola_interactive = true);
-end special;
diff --git a/Noise 1.0 Beta.1/Sources/ColoredSignalBasedNoise.mo b/Noise 1.0 Beta.1/Sources/ColoredSignalBasedNoise.mo
deleted file mode 100644
index 8dc46251..00000000
--- a/Noise 1.0 Beta.1/Sources/ColoredSignalBasedNoise.mo
+++ /dev/null
@@ -1,13 +0,0 @@
-within Noise.Sources;
-block ColoredSignalBasedNoise
- "Implements a filter directly within the (signal-based) noise signal"
- extends SignalBasedNoise(
- redeclare replaceable package interpolation =
- Noise.Interpolators.FirstOrder constrainedby
- Noise.Interpolators.Utilities.Interfaces.PartialInterpolatorWithKernel,
- redeclare replaceable function distribution =
- Modelica_Noise.Math.TruncatedDistributions.Normal.quantile (
- mu = 0,
- sigma = 1 / sqrt(samplePeriod)),
- samplePeriod = interpolation.suggestedSamplePeriod);
-end ColoredSignalBasedNoise;
diff --git a/Noise 1.0 Beta.1/Sources/SignalBasedNoise.mo b/Noise 1.0 Beta.1/Sources/SignalBasedNoise.mo
deleted file mode 100644
index 51f4003a..00000000
--- a/Noise 1.0 Beta.1/Sources/SignalBasedNoise.mo
+++ /dev/null
@@ -1,455 +0,0 @@
-within Noise.Sources;
-block SignalBasedNoise
- "Noise generator for Real numbers associated with the input signal (this block computes always the same (random) output y at the same value of the input signal)"
- import Modelica_Noise.Math.Random;
- import Modelica.Utilities.Streams.print;
-
- extends Modelica.Blocks.Interfaces.SO;
-
- // Main dialog menu
- parameter Boolean useTime = true
- "= true: u = time otherwise use input connector"
- annotation(choices(checkBox=true));
-
- parameter Real samplePeriod(start=0.01)
- "Period in signal for pseudo-sampling the raw random numbers"
- annotation(Dialog(enable=enableNoise));
- parameter Real y_min(start=0.0) "Minimum value of noise"
- annotation(Dialog(enable=enableNoise));
- parameter Real y_max(start=1.0) "Maximum value of noise"
- annotation(Dialog(enable=enableNoise));
-
- // Advanced dialog menu: Noise generation
- parameter Boolean enableNoise = true "=true: y = noise, otherwise y = y_off"
- annotation(choices(checkBox=true),Dialog(tab="Advanced",group="Noise generation"));
- parameter Real y_off = 0.0 "Output if enableNoise=false"
- annotation(Dialog(tab="Advanced",group="Noise generation"));
- //parameter Integer sampleFactor(min=1)=100
- // "Events only at samplePeriod*sampleFactor if continuous"
- // annotation(Evaluate=true,Dialog(tab="Advanced",group="Noise generation", enable=enableNoise));
- final parameter Integer shift = -interpolation.nPast
- "Shift noise samples to account for interpolation buffer"
- annotation(Dialog(tab="Advanced",group="Noise generation"));
-
- // Advanced dialog menu: Random number properties
- replaceable function distribution =
- Modelica_Noise.Math.Distributions.Uniform.quantile constrainedby
- Modelica_Noise.Math.TruncatedDistributions.Interfaces.partialQuantile(
- final y_min=y_min, final y_max=y_max)
- "Random number distribution (truncated to y_min..y_max)"
- annotation(choicesAllMatching=true, Dialog(tab="Advanced",group="Random number properties",enable=enableNoise),
- Documentation(revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- replaceable package interpolation =
- Interpolators.Constant constrainedby
- Interpolators.Utilities.Interfaces.PartialInterpolator
- "Interpolation method in grid of raw random numbers"
- annotation(choicesAllMatching=true, Dialog(tab="Advanced",group="Random number properties",enable=enableNoise),
- Documentation(revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- replaceable package generator =
- Modelica_Noise.Math.Random.Generators.Xorshift128plus constrainedby
- Modelica_Noise.Math.Random.Interfaces.PartialGenerator
- "Random number generator"
- annotation(choicesAllMatching=true, Dialog(tab="Advanced",group="Random number properties",enable=enableNoise),
- Documentation(revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-
- // Advanced dialog menu: Initialization
- parameter Boolean useGlobalSeed = true
- "= true: use global seed, otherwise ignore it"
- annotation(choices(checkBox=true),Dialog(tab="Advanced",group = "Initialization",enable=enableNoise));
- parameter Boolean useAutomaticLocalSeed = true
- "= true: use instance name hash else fixedLocalSeed"
- annotation(choices(checkBox=true),Dialog(tab="Advanced",group = "Initialization",enable=enableNoise));
- parameter Integer fixedLocalSeed = 10
- "Local seed if useAutomaticLocalSeed = false"
- annotation(Dialog(tab="Advanced",group = "Initialization",enable=enableNoise and not useAutomaticLocalSeed));
- final parameter Integer localSeed = if useAutomaticLocalSeed then Modelica_Noise.Math.Random.Utilities.automaticLocalSeed(getInstanceName()) else
- fixedLocalSeed;
- parameter Real signalOffset = 0.0
- "Offset in signal for sampling the raw random numbers"
- annotation(Dialog(tab="Advanced", group="Initialization",enable=enableNoise));
-
- Modelica.Blocks.Interfaces.RealInput u if not useTime
- "Input signal (the noise depends on the value of u at the actual time instant"
- annotation (Placement(transformation(extent={{-140,-20},{-100,20}}, rotation=0)));
-
- // Retrieve values from outer global seed
-protected
- outer Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed
- "Definition of global seed via inner/outer";
- parameter Integer actualGlobalSeed = if useGlobalSeed then globalSeed.seed else 0
- "The global seed, which is atually used";
- parameter Boolean generateNoise = enableNoise and globalSeed.enableNoise
- "= true if noise shall be generated, otherwise no noise";
-
- // Construct sizes
- parameter Boolean continuous = interpolation.continuous
- "= true, if continuous interpolation";
- //parameter Real actualSamplePeriod = if continuous then sampleFactor*samplePeriod else samplePeriod
- // "Sample period of when-clause";
- parameter Integer nFuture = interpolation.nFuture + 1
- "Number of buffer elements to be predicted in the future (+1 for rounding errors)";
- parameter Integer nPast = interpolation.nPast
- "Number of buffer elements to be retained from the past";
- //parameter Integer nCopy = nPast + nFuture
- // "Number of buffer entries to retain when re-filling buffer";
- parameter Integer nBuffer = nPast+1+nFuture "Size of buffer";
- //parameter Integer nBuffer = if continuous then nPast+sampleFactor+nFuture
- // else nPast+ 1 +nFuture
- // "Size of buffer";
-
- // Declare buffers
- //discrete Integer state[generator.nState]
- // "Internal state of random number generator";
- Real buffer[nBuffer] "Buffer to hold raw random numbers";
- //discrete Real bufferStartTime "The last time we have filled the buffer";
- Real r[nBuffer] "Uniform random number in the range (0,1]";
-
- Modelica.Blocks.Interfaces.RealInput signal
- "The input signal to the random number generator";
- Real offset = (signal-signalOffset) / samplePeriod;
-equation
- if useTime then
- signal = time;
- else
- connect(signal,u);
- end if;
-
- // Continuously fill the buffer with random numbers
- for i in 1:nBuffer loop
- r[i] = if interpolation.continuous then
- zeroDer(generator.random(
- initialState(localSeed=localSeed,
- globalSeed=actualGlobalSeed,
- signal=(noEvent(integer(offset)) + i + shift) * samplePeriod + signalOffset))) else
- zeroDer(generator.random(
- initialState(localSeed=localSeed,
- globalSeed=actualGlobalSeed,
- signal=( (integer(offset)) + i + shift) * samplePeriod + signalOffset)));
- buffer[i] = distribution(r[i]);
- end for;
-
- // Generate noise, if requested, and make it smooth, if it is
- y = if not generateNoise then y_off else
- if interpolation.continuous then
- smooth(interpolation.smoothness,
- interpolation.interpolate(buffer= buffer,
- offset= offset - zeroDer(noEvent(integer(offset))) + nPast,
- samplePeriod= samplePeriod)) else
- interpolation.interpolate(buffer= buffer,
- offset= offset - zeroDer(noEvent(integer(offset))) + nPast,
- samplePeriod= samplePeriod);
-
- // We require a few smooth functions for derivatives
-protected
- function convertRealToIntegers "Casts a double value to two integers"
- input Real real "The Real value";
- output Integer[2] int "The Integer values";
-
- external "C" ModelicaRandom_convertRealToIntegers(real,int);
-
- annotation (Include = "#include \"ModelicaRandom.c\"", Documentation(revisions="
-
Developed 2014 at the DLR Institute of System Dynamics and Control
-", info="
-Syntax
-
-int = convertRealToInteger(real);
-
-Description
-
-The Real input argument real is mapped to two Integer values int[1] and int[2].
-The function assumes that two Integer values have exactly the same length
-as one Real value (e.g. one Integer has a length of 32 bits and one Real
-value has a length of 64 bits).
-
-"));
- end convertRealToIntegers;
-
- function initialState "Combine Real signal with Integer seeds"
- input Integer localSeed "The local seed";
- input Integer globalSeed "the global seed";
- input Real signal "The Real signal";
- output Integer state[generator.nState]
- "The initial state of random number generator";
- protected
- Integer ints[2] "Real signal casted to integers";
- algorithm
- ints := convertRealToIntegers(signal);
- state := generator.initialState(localSeed+ints[1], globalSeed+ints[2]);
- end initialState;
-
- function zeroDer "Declare an expression to have zero derivative"
- input Real u "Original expression";
- input Real dummy = 0 "Dummy variable to have something to derive (=0)";
- output Real y "=u";
- algorithm
- y := u;
- annotation(Inline=false,derivative(noDerivative = u) = der_zeroDer);
- end zeroDer;
-
- function der_zeroDer "Zero derivative for zeroDer(expression)"
- input Real u "Original expression";
- input Real dummy = 0 "Dummy variable to have somthing to derive (=0)";
- input Real der_dummy = 0 "der(dummy)";
- output Real der_y "der(y) = der(u) = 0";
- algorithm
- der_y := 0;
- annotation(Inline=true);
- end der_zeroDer;
-
- annotation(Dialog(tab="Advanced",group = "Initialization",enable=enableNoise),
- Icon(coordinateSystem(preserveAspectRatio=false, extent={{-100,-100},
- {100,100}}), graphics={
- Polygon(
- points={{-76,90},{-84,68},{-68,68},{-76,90}},
- lineColor={192,192,192},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid),
- Line(points={{-76,68},{-76,-80}}, color={192,192,192}),
- Line(points={{-86,0},{72,0}}, color={192,192,192}),
- Polygon(
- points={{94,0},{72,8},{72,-8},{94,0}},
- lineColor={192,192,192},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid),
- Line(visible = enableNoise,
- points={{-75,-13},{-61,-13},{-61,3},{-53,3},{-53,-45},{-45,-45},{-45,
- -23},{-37,-23},{-37,61},{-29,61},{-29,29},{-29,29},{-29,-31},{-19,
- -31},{-19,-13},{-9,-13},{-9,-41},{1,-41},{1,41},{7,41},{7,55},{13,
- 55},{13,-1},{23,-1},{23,11},{29,11},{29,-19},{39,-19},{39,53},{49,
- 53},{49,19},{57,19},{57,-47},{67,-47}},
- color={0,0,0}),
- Text(visible=enableNoise,
- extent={{-150,-110},{150,-150}},
- lineColor={0,0,0},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid,
- textString=if useTime then "%samplePeriod s" else "%samplePeriod"),
- Line(visible=not enableNoise,
- points={{-76,56},{72,56}},
- color={0,0,0},
- smooth=Smooth.None),
- Text(visible=not enableNoise,
- extent={{-75,50},{95,10}},
- lineColor={0,0,0},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid,
- textString="%y_off")}),
- Documentation(info="
-A summary of the properties of the noise blocks is provided in the documentation of package Blocks.Noise. This SignalBasedNoise block generates reproducible noise at its output. The block can only be used if on the same or a higher hierarchical level, model Blocks.Noise.GlobalSeed is dragged to provide global settings for all instances.
-The generated random numbers of this block are a function of the input signal. Blocks with different input signals produce uncorrelated noise. This can be used to define e.g. the roughness of a railway track. The random values provided at the output of a SignalBasedNoise instance depend (a) on the actual input signal in the current time instant, (b) on the instance name, and (c) on the settings of the respective instance (as well as the seetings in globalSeed, see above and below). By default, two or more instances produce different, uncorrelated noise for the same input signal.
-
-
-Parameters that need to be defined
-
-When using this block, at a minimum the following parameters must be defined:
-
-
-
-
-Parameter |
-Description |
-
-
-useTime |
-If useTime=true, then the input signal is replaced by the current simulation time. This is the default. If useTime=false, then an input connector is used, which defines the ordinate of the random signal. For each value of the input signal, a different random number is generated. |
-
-
-samplePeriod |
-Random values are drawn on a periodic grid over the input signal. The period of this grid is defined with this parameter. The unit of the samplePeriod corresponds to the unit of the input signal. If useTime=true, then the samplePeriod defines a sample Period in [s]. As a result of this pseudo-sampling, the highest frequency fmax contained in the generated noise is fmax = 1/samplePeriod. By default, no events are generated. In between, the noise is linearly interpolated at the drawn random values. |
-
-
-y_min, y_max |
-Upper and lower bounds for the noise. With the default setting, uniform noise is generated within these bounds. |
-
-
-
-
-
-As a simple demonstration, see example Blocks.Examples.NoiseExamples.SignalBasedNoise. In the next diagram, a simulation result is shown with a ramped input signal repeated every second. The generated random numbers then also repeat every second!
-
-
-Advanced tab: General settings
-In the Advanced tab of the parameter menu, further options can be set. The general settings are shown in the next table:
-
-
-
-Parameter |
-Description |
-
-
-enableNoise |
-= true, if noise is generated at the output of the block.= false, if noise generation is switched off and the constant value y_off is provided as output. |
-
-
-y_off |
-If enableNoise = false, the output of the block instance has the value y_off. Default is y_off = 0.0. Furthermore, if time<startTime, the output of the block is also y_off. |
-
-
-
-
-Advanced tab: Random number properties
-
-In the group "Random number properties", the properties of the random number generation are defined. By default, uniform random numbers with linear interpolation are used, and the random numbers are drawn with the pseudo random number generator algorithm "xorshift128+". This random number generator has a period of 2^128, has an internal state of 4 Integer elements, and has excellent statistical properties. If the default behavior is not desired, the following parameters can be set:
-
-
-
-Parameter |
-Description |
-
-
-distribution |
-Defines the random number distribution to map random numbers from the range 0.0 ... 1.0, to the desired range and distribution. Basically, distribution is a replaceable function that provides the truncated quantile (= truncated inverse cumulative distribution function) of a random distribution. More details of truncated distributions can be found in the documentation of package Math.TruncatedDistributions. |
-
-
-interpolation |
-Defines the type of interpolation between the random values drawn at sample instants. This is a replaceable package. The following interpolation packages are provided in package Math.Random.Utilities.Interpolators:
-- Constant: The random values are held constant between sample instants.
- Linear: The random values are linearly interpolated between sample instants.
- SmoothIdealLowPass: The random values are smoothly interpolated with the sinc function. This is an approximation of an ideal low pass filter (that would have an infinite steep drop of the frequency response at the cut-off frequency 1/samplePeriod).
- |
-
-
-generator |
-Defines the pseudo random number generator to be used. This is a replaceable package. The random number generators that are provided in package Math.Random.Generators can be used here. Properties of the various generators are described in the package description of the Generators package. |
-
-
-
-
-The different interpolation methods are demonstrated with example Examples.NoiseExamples.Interpolation. The example uses the block TimeBasedNoise, but the results also hold for SignalBasedNoise. A simulation result is shown in the next diagram:
-
-
-As can be seen, constant (constantNoise.y) and linear (linearNoise.y) interpolation respect the defined band -1 .. 3. Instead, smooth interpolation with the sinc function (smoothNoise.y) may violate the band slightly in order to be able to smoothly interpolate the random values at the sample instants. In practical applications, this is not an issue because the exact band of the noise is usually not exactly known.
-
-The selected interpolation method does not change the mean value of the noise signal, but it changes its variance with the following factors:
-
-
-
-interpolation |
-variance factor |
-
-
-Constant |
-1.0 |
-
-
-Linear |
-2/3 (actual variance = 2/3*<variance of constantly interpolated noise>) |
-
-
-SmoothIdealLowPass |
-0.979776342307764 (actual variance = 0.97..*<variance of constantly interpolated noise>) |
-
-
-
-
-
-The above table holds only if an event is generated at every sample instant, or for very small relative tolerances. Otherwise, the variance depends also slightly on the step-size and the interpolation method of the integrator. Therefore, if the variance of the noise is important for your application, either change the distribution definition to take the factors above into account, or use only constant interpolation.
-
-
-Advanced tab: Initialization
-
-The random number generators must be properly initialized, especially that different instances of the noise block generate uncorrelated noise. For this purpose the following parameters can be defined.
-
-
-
-Parameter |
-Description |
-
-
-useGlobalSeed |
-= true, if the seed (= Integer number) defined in the "inner GlobalSeed globalSeed" component is used for the initialization of the random number generators. Therefore, whenever the globalSeed defines a different number, the noise at every instance is changing. = false, if the seed defined by globalSeed is ignored. For example, if aerodynamic turbulence is modelled with a noise block and this turbulence model shall be used for all simulation runs of a Monte Carlo simulation, then useGlobalSeed has to be set to false. |
-
-
-useAutomaticLocalSeed |
-An Integer number, called local seed, is needed to generate different random signals with every block instance. Instances using the same local seed produce exactly the same random number values (so the same noise, if the other settings of the instances are the same). If useAutomaticLocalSeed = true, the local seed is determined automatically as hash value of the instance name of the noise block. If useAutomaticLocalSeed = false, the local seed is defined explicitly by parameter fixedLocalSeed. This might be useful, if you use the noise block to model the roughness of a road and the road should be the same for every vehicle. |
-
-
-fixedLocalSeed |
-If useAutomaticLocalSeed = false, the local seed to be used. fixedLocalSeed can be any Integer number (including zero or a negative number). The initialization algorithm produces a meaningful initial state of the random number generator, so subsequently drawing random numbers produces statistically meaningful numbers. |
-
-
-signalOffset |
-The signalOffset parameter can be used to shift the input signal. This can be used, if you wish the pseudo-sampling (see parameter samplePeriod) to happen at specific values of the input signal. |
-
-
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end SignalBasedNoise;
diff --git a/Noise 1.0 Beta.1/Sources/TimeBasedNoise.mo b/Noise 1.0 Beta.1/Sources/TimeBasedNoise.mo
deleted file mode 100644
index 169591b8..00000000
--- a/Noise 1.0 Beta.1/Sources/TimeBasedNoise.mo
+++ /dev/null
@@ -1,500 +0,0 @@
-within Noise.Sources;
-block TimeBasedNoise
- "Noise generator for Real numbers associated with time (this block computes always the same (random) output y at the same time instant)"
- import Modelica_Noise.Math.Random;
- import Modelica.Utilities.Streams.print;
-
- extends Modelica.Blocks.Interfaces.SO;
-
- // Main dialog menu
- parameter Modelica.SIunits.Time samplePeriod(start=0.01)
- "Period for sampling the raw random numbers"
- annotation(Dialog(enable=enableNoise));
- parameter Real y_min(start=0.0) "Minimum value of noise"
- annotation(Dialog(enable=enableNoise));
- parameter Real y_max(start=1.0) "Maximum value of noise"
- annotation(Dialog(enable=enableNoise));
-
- // Advanced dialog menu: Noise generation
- parameter Boolean enableNoise = true "=true: y = noise, otherwise y = y_off"
- annotation(choices(checkBox=true),Dialog(tab="Advanced",group="Noise generation"));
- parameter Real y_off = 0.0 "Output if time
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- replaceable package interpolation =
- Interpolators.Constant constrainedby
- Interpolators.Utilities.Interfaces.PartialInterpolator
- "Interpolation method in grid of raw random numbers"
- annotation(choicesAllMatching=true, Dialog(tab="Advanced",group="Random number properties",enable=enableNoise),
- Documentation(revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
- replaceable package generator =
- Modelica_Noise.Math.Random.Generators.Xorshift128plus constrainedby
- Modelica_Noise.Math.Random.Interfaces.PartialGenerator
- "Random number generator"
- annotation(choicesAllMatching=true, Dialog(tab="Advanced",group="Random number properties",enable=enableNoise),
- Documentation(revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-
- // Advanced dialog menu: Initialization
- parameter Boolean useGlobalSeed = true
- "= true: use global seed, otherwise ignore it"
- annotation(choices(checkBox=true),Dialog(tab="Advanced",group = "Initialization",enable=enableNoise));
- parameter Boolean useAutomaticLocalSeed = true
- "= true: use instance name hash else fixedLocalSeed"
- annotation(choices(checkBox=true),Dialog(tab="Advanced",group = "Initialization",enable=enableNoise));
- parameter Integer fixedLocalSeed = 10
- "Local seed if useAutomaticLocalSeed = false"
- annotation(Dialog(tab="Advanced",group = "Initialization",enable=enableNoise and not useAutomaticLocalSeed));
- final parameter Integer localSeed = if useAutomaticLocalSeed then integer(globalSeed.random()*2147483647) else
- fixedLocalSeed;
- parameter Modelica.SIunits.Time startTime = 0.0
- "Start time for sampling the raw random numbers"
- annotation(Dialog(tab="Advanced", group="Initialization",enable=enableNoise));
-
- // Retrieve values from outer global seed
-protected
- outer Modelica_Noise.Blocks.Noise.GlobalSeed globalSeed
- "Definition of global seed via inner/outer";
- parameter Integer actualGlobalSeed = if useGlobalSeed then globalSeed.seed else 0
- "The global seed, which is atually used";
- parameter Boolean generateNoise = enableNoise and globalSeed.enableNoise
- "= true if noise shall be generated, otherwise no noise";
-
- // Construct sizes
- parameter Boolean continuous = interpolation.continuous
- "= true, if continuous interpolation";
- parameter Real actualSamplePeriod = if continuous then sampleFactor*samplePeriod else samplePeriod
- "Sample period of when-clause";
- parameter Integer nFuture = interpolation.nFuture+1
- "Number of buffer elements to be predicted in the future (+1 for crossing sample events)";
- parameter Integer nPast = interpolation.nPast
- "Number of buffer elements to be retained from the past";
- parameter Integer nCopy = nPast + nFuture
- "Number of buffer entries to retain when re-filling buffer";
- parameter Integer nBuffer = if continuous then nPast+sampleFactor+nFuture
- else nPast+ 1 +nFuture
- "Size of buffer";
-
- // Declare buffers
- discrete Integer state[generator.nState]
- "Internal state of random number generator";
- discrete Real buffer[nBuffer] "Buffer to hold raw random numbers";
- discrete Real bufferStartTime "The last time we have filled the buffer";
- discrete Real r "Uniform random number in the range (0,1]";
-
-algorithm
- // During initialization the buffer is filled with random values
- when initial() then
- state := generator.initialState(localSeed, actualGlobalSeed);
- bufferStartTime := time;
- for i in 1:shift loop
- (r, state) := generator.random(state);
- end for;
- for i in 1:nBuffer loop
- (r, state) := generator.random(state);
- buffer[i] := distribution(r);
- end for;
-
- // At the first sample, we simply use the initial buffer
- elsewhen generateNoise and time >= startTime then
- bufferStartTime := time;
-
- // At the following samples, we shift the buffer and fill the end up with new random numbers
- elsewhen generateNoise and sample(startTime+actualSamplePeriod, actualSamplePeriod) then
- bufferStartTime := time;
- buffer[1:nCopy] := buffer[nBuffer-nCopy+1:nBuffer];
- for i in nCopy+1:nBuffer loop
- (r, state) := generator.random(state);
- buffer[i] := distribution(r);
- end for;
- end when;
-
-equation
-
- // Generate noise, if requested, and make it smooth, if it is
- y = if not generateNoise or time < startTime then y_off else
- if interpolation.continuous then
- smooth(interpolation.smoothness,
- interpolation.interpolate(buffer= buffer,
- offset= (time-bufferStartTime) / samplePeriod + nPast,
- samplePeriod= samplePeriod)) else
- interpolation.interpolate(buffer= buffer,
- offset= (time-bufferStartTime) / samplePeriod + nPast,
- samplePeriod= samplePeriod);
-
- annotation(Dialog(tab="Advanced",group = "Initialization",enable=enableNoise),
- Icon(coordinateSystem(preserveAspectRatio=false, extent={{-100,-100},
- {100,100}}), graphics={
- Polygon(
- points={{-76,90},{-84,68},{-68,68},{-76,90}},
- lineColor={192,192,192},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid),
- Line(points={{-76,68},{-76,-80}}, color={192,192,192}),
- Line(points={{-86,0},{72,0}}, color={192,192,192}),
- Polygon(
- points={{94,0},{72,8},{72,-8},{94,0}},
- lineColor={192,192,192},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid),
- Line(visible = enableNoise,
- points={{-75,-13},{-61,-13},{-61,3},{-53,3},{-53,-45},{-45,-45},{-45,
- -23},{-37,-23},{-37,61},{-29,61},{-29,29},{-29,29},{-29,-31},{-19,
- -31},{-19,-13},{-9,-13},{-9,-41},{1,-41},{1,41},{7,41},{7,55},{13,
- 55},{13,-1},{23,-1},{23,11},{29,11},{29,-19},{39,-19},{39,53},{49,
- 53},{49,19},{57,19},{57,-47},{67,-47}},
- color={0,0,0}),
- Text(visible=enableNoise,
- extent={{-150,-110},{150,-150}},
- lineColor={0,0,0},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid,
- textString="%samplePeriod s"),
- Line(visible=not enableNoise,
- points={{-76,56},{72,56}},
- color={0,0,0},
- smooth=Smooth.None),
- Text(visible=not enableNoise,
- extent={{-75,50},{95,10}},
- lineColor={0,0,0},
- fillColor={192,192,192},
- fillPattern=FillPattern.Solid,
- textString="%y_off")}),
- Documentation(info="
-
-A summary of the properties of the noise blocks is provided
-in the documentation of package
-Blocks.Noise.
-This TimeBasedNoise block generates reproducible noise at its output.
-The block can only be used if on the same or a higher hierarchical level,
-model Blocks.Noise.GlobalSeed
-is dragged to provide global settings for all instances.
-
-
-
-For every block instance,
-the internally used pseudo random number generator has its own state, and therefore
-the random values computed in different instances of the TimeBasedNoise block are uncorrelated.
-The random values provided at the output of a TimeBasedNoise instance depend (a)
-on the actual time instant, (b) on the instance name, and (c) on the settings of
-the respective instance (as well as the seetings in globalSeed, see above and below).
-By default, two or more instances produce different, uncorrelated noise at the same time instant.
-
-
-
-Parameters that need to be defined
-
-
-When using this block, at a minimum the following parameters must be defined:
-
-
-
-
-
-Parameter |
- Description |
-
- samplePeriod |
- Random values are drawn periodically at the sample rate in [s]
- defined with this parameter. As a result, the highest frequency fmax
- contained in the generated noise is fmax = 1/samplePeriod.
- By default, time events are generated only at every 100 sample instant.
- In between, the noise is linearly interpolated at the drawn random
- values. |
-
- y_min, y_max |
- Upper and lower bounds for the noise. With the default setting,
- uniform noise is generated within these bounds. |
-
-
-
-
-As a simple demonstration, see example Blocks.Examples.NoiseExamples.TimeBasedNoise.
-In the next diagram, a simulation result is shown for samplePeriod=0.02 s, y_min=-1, y_max=3:
-
-
-
-
-
-
-Advanced tab: General settings
-
-In the Advanced tab of the parameter menu, further options can be set.
-The general settings are shown in the next table:
-
-
-
-
-
-Parameter |
- Description |
-
- enableNoise |
- = true, if noise is generated at the output of the block.
- = false, if noise generation is switched off and the constant value
- y_off is provided as output. |
- y_off |
- If enableNoise = false, the output of the block instance has the
- value y_off. Default is y_off = 0.0.
- Furthermore, if time<startTime, the output of the block is also
- y_off. |
-
- sampleFactor |
- If the drawn random numbers are continuously interpolated
- (so interpolation ≠ Constant), then a time event is only
- generated at every sampleFactor sample instant. At such an event a
- buffer is filled with the next sampleFactor random values and
- interpolation takes place in this buffer. This approach speeds up the
- simulation considerably, in many cases (provided not too small relative
- tolerance is selected for the integrator).
- If interpolation = Constant, then sampleFactor is ignored and a time
- event is generated at every sample instant. If sampleFactor = 1, then
- a time event is also generated at every sample instant, independently of
- the selected interpolation method (which leads usually to a slow
- simulation). |
-
-
-
-Advanced tab: Random number properties
-
-In the group \"Random number properties\", the properties of the random number
-generation are defined. By default, uniform random numbers with linear
-interpolation are used, and the random numbers are drawn with the pseudo
-random number generator algorithm \"xorshift128+\". This random number generator
-has a period of 2^128, has an internal state of 4 Integer elements, and has
-excellent statistical properties. If the default behavior is not desired, the
-following parameters can be set:
-
-
-
-
-
-Parameter |
- Description |
-
- distribution |
- Defines the random number distribution to map random numbers
- from the range 0.0 ... 1.0, to the desired range and distribution.
- Basically, distribution is a replaceable function that
- provides the truncated quantile (= truncated
- inverse cumulative distribution function) of a random distribution.
- More details of truncated distributions can be found in the
- documentation of package
- Math.TruncatedDistributions.
- |
-
- interpolation |
- Defines the type of interpolation between the random values drawn
- at sample instants. This is a replaceable package.
- The following interpolation packages are provided in package
- Math.Random.Utilities.Interpolators:
-
- - Constant: The random values are hold constant between sample instants.
- - Linear: The random values are linearly interpolated between sample instants.
- - SmoothIdealLowPass: The random values are smoothly interpolated with the
- sinc function.
- This is an approximation of an ideal low pass filter
- (that would have an infinite steep drop of the frequency response at
- the cut-off frequency 1/samplePeriod).
-
- |
-
- generator |
- Defines the pseudo random number generator to be used. This is
- a replaceable package. The random number generators that are provided in
- package Math.Random.Generators
- can be used here. Properties of the various generators are described in the package
- description of the Generators package. |
-
-
-
-
-
-The different interpolation methods are demonstrated with example
-Examples.NoiseExamples.Interpolation.
-A simulation result is shown in the next diagram:
-
-
-
-
-
-
-
-As can be seen, constant (constantNoise.y) and linear (linearNoise.y) interpolation
-respects the defined band -1 .. 3.
-Instead, smooth interpolation with the sinc function (smoothNoise.y) may violate the band
-slightly in order to be able to smoothly interpolate the random values at the sample instants.
-In practical applications, this is not an issue because the exact band of the noise
-is usually not exactly known.
-
-
-
-The selected interpolation method does not change the mean value of the
-noise signal, but it changes its variance with the following factors:
-
-
-
-
-
-interpolation |
- variance factor |
- Constant |
- 1.0 |
- Linear |
- 2/3 (actual variance = 2/3*<variance of constantly interpolated noise>) |
- SmoothIdealLowPass |
- 0.979776342307764 (actual variance = 0.97..*<variance of constantly interpolated noise>) |
-
-
-
-
-The above table holds only if an event is generated at every sample instant
-(sampleFactor=1), or for very small relative tolerances. Otherwise, the variance
-depends also slightly on the step-size and the interpolation method of the
-integrator. Therefore, if the variance of the noise is important for your application,
-either change the distribution definition to take the factors above into account,
-or use only constant interpolation.
-
-
-Advanced tab: Initialization
-
-
-The random number generators must be properly initialized, especially that
-different instances of the noise block generate uncorrelated noise.
-For this purpose the following parameters can be defined.
-
-
-
-
-
-Parameter |
- Description |
-
- useGlobalSeed |
- = true, if the seed (= Integer number) defined in the \"inner GlobalSeed globalSeed\"
- component is used for the initialization of the random number generators.
- Therefore, whenever the globalSeed defines a different number, the noise at every
- instance is changing.
- = false, if the seed defined by globalSeed is ignored. For example, if
- aerodynamic turbulence is modelled with a noise block and this turbulence
- model shall be used for all simulation runs of a Monte Carlo simulation, then
- useGlobalSeed has to be set to false. |
-
- useAutomaticLocalSeed |
- An Integer number, called local seed, is needed to initalize the random number
- generator for a specific block instance. Instances using the same local seed
- produce exactly the same random number values (so the same noise, if the other settings
- of the instances are the same). If useAutomaticLocalSeed = true, the
- local seed is determined automatically as hash value of the instance name of the
- noise block. If useAutomaticLocalSeed = false, the local seed is defined
- explicitly by parameter fixedLocalSeed. |
-
- fixedLocalSeed |
- If useAutomaticLocalSeed = false, the local seed to be used.
- fixedLocalSeed can be any Integer number (including zero or a negative number).
- The initialization algorithm produces a meaningful initial state of the random
- number generator, so the subsequently drawing of random numbers produce statistically
- meaningful numbers |
-
- startTime |
- The time instant at which noise shall be generated at the output y.
- For time<startTime, y = y_off. In some cases it is meaningful to simulate
- a certain duration until an approximate steady-state is reached. In such a case
- startTime should be set to a time instant after this duration. |
-
-
-", revisions="
-
-
-Date | Description |
-
- Feb. 18, 2015 |
-
-
-
- |
-
-
-
-"));
-end TimeBasedNoise;
diff --git a/Noise 1.0 Beta.1/Sources/package.mo b/Noise 1.0 Beta.1/Sources/package.mo
deleted file mode 100644
index 0212a1b1..00000000
--- a/Noise 1.0 Beta.1/Sources/package.mo
+++ /dev/null
@@ -1,11 +0,0 @@
-within Noise;
-package Sources "More noise sources"
-extends Modelica.Icons.Package;
-
-
-annotation (Icon(graphics={ Line(
- points={{-84,0},{-54,0},{-54,40},{-24,40},{-24,-70},{6,-70},{6,80},{36,80},
- {36,-20},{66,-20},{66,60}},
- color={0,0,0},
- smooth=Smooth.None)}));
-end Sources;
diff --git a/Noise 1.0 Beta.1/Sources/package.order b/Noise 1.0 Beta.1/Sources/package.order
deleted file mode 100644
index 044dbf1f..00000000
--- a/Noise 1.0 Beta.1/Sources/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-TimeBasedNoise
-SignalBasedNoise
-ColoredSignalBasedNoise
diff --git a/Noise 1.0 Beta.1/Statistics/Correlation.mo b/Noise 1.0 Beta.1/Statistics/Correlation.mo
deleted file mode 100644
index 49814296..00000000
--- a/Noise 1.0 Beta.1/Statistics/Correlation.mo
+++ /dev/null
@@ -1,75 +0,0 @@
-within Noise.Statistics;
-block Correlation
- extends Modelica.Blocks.Interfaces.SI2SO;
-
-// Parameters
-public
- parameter Modelica.SIunits.Time delta_t(min=0) = 0.0
- "Time delay for auto-correlation of signal";
-
-// The start time of the simulation
-public
- parameter Real t_0(fixed=false) "Start time of the simulation";
-initial equation
- t_0 = time;
-
-// The local integration time
-public
- Real t = max(0, time - delta_t - t_0)
- "The local integration time (starts only after an offset of delta_t";
-
-// The actual signals to correlate
-public
- Real X = u1
- "The first random variable to calculate the correlation coefficient";
- Real Y = delay(u2,delta_t, delta_t+0.1)
- "The second random variable to calculate the correlation coefficient";
-
-// Some integrals
-public
- Real int_X "The integral of X";
- Real int_Y "The integral of Y";
- Real int_X2 "The integral of X^2";
- Real int_Y2 "The integral of Y^2";
- Real int_XY "The integral of X*Y";
-initial equation
- int_X = 0;
- int_Y = 0;
- int_X2 = 0;
- int_Y2 = 0;
- int_XY = 0;
-equation
- der(int_X) = if t < 0 then 0 else X;
- der(int_Y) = if t < 0 then 0 else Y;
- der(int_X2) = if t < 0 then 0 else X^2;
- der(int_Y2) = if t < 0 then 0 else Y^2;
- der(int_XY) = if t < 0 then 0 else X*Y;
-
-// The mean values
-public
- Real mean_X = if t <= 0 then X else int_X / t "The mean value of X";
- Real mean_Y = if t <= 0 then Y else int_Y / t "The mean value of Y";
-
-// The variance values
-public
- Real var_X = if t <= 0 then 0 else (int_X2 - 2*mean_X*int_X + mean_X^2*t) / t
- "The variance of X";
- Real var_Y = if t <= 0 then 0 else (int_Y2 - 2*mean_Y*int_Y + mean_Y^2*t) / t
- "The variance of Y";
- Real cov_XY = if t <= 0 then 0 else (int_XY - mean_X*int_Y - mean_Y*int_X + mean_X*mean_Y*t) / t
- "The co-variance of X and Y";
-
-// The actual correlation
-public
- Real r = noEvent(if var_X <= 0 then 1.0 else
- if var_Y <= 0 then 1.0 else
- if var_X*var_Y <= cov_XY^2 then 1.0 else cov_XY / sqrt(abs(var_X)) / sqrt(abs(var_Y)))
- "The Bravais- or Pearson-Correlation-Coefficient r = cov_XY / std_X / std_Y";
-
-equation
- y=r;
-
- annotation ( Documentation(revisions="
-
Developed 2014 at the DLR Institute of SYstem DYnamics and Control
-"));
-end Correlation;
diff --git a/Noise 1.0 Beta.1/Statistics/CorrelationTest.mo b/Noise 1.0 Beta.1/Statistics/CorrelationTest.mo
deleted file mode 100644
index 19491818..00000000
--- a/Noise 1.0 Beta.1/Statistics/CorrelationTest.mo
+++ /dev/null
@@ -1,59 +0,0 @@
-within Noise.Statistics;
-block CorrelationTest
- "Tests the null hypothesis that two signals have a given true correlation coefficient"
- extends Modelica.Blocks.Interfaces.SI2SO;
-
-// The start time of the simulation
-public
- parameter Real t_0(fixed=false) "Start time of the simulation";
- parameter Real t_eps = 0.001 "Start time of the simulation";
-initial equation
- t_0 = time;
-
-// The distribution parameters
-public
- parameter Real rho = 0.0;
- Real sigma = if time-t_0 > t_eps then 1 / sqrt(time-t_0) else 1/sqrt(t_eps);
-protected
- encapsulated model FisherTransformation
- "Transforms a correlation to be approximately normally distributed"
- import Modelica;
- extends Modelica.Blocks.Interfaces.SISO;
- parameter Real r_max = 0.99 "Cut-off for correlation coefficient";
- equation
- y = noEvent(if u >= r_max then 0.5 * log( (1+r_max) / (1-r_max)) else
- if u <= -r_max then 0.5 * log( (1+r_max) / (1-r_max)) else 0.5 * log(max(1e-8, (1+u) / (1-u))));
- end FisherTransformation;
-public
- Correlation correlation
- annotation (Placement(transformation(extent={{-80,-10},{-60,10}})));
- SignificanceTest significanceTest(redeclare function H =
- Modelica_Noise.Math.Distributions.Normal.cumulative (mu=rho, sigma=sigma))
- annotation (Placement(transformation(extent={{60,-10},{80,10}})));
- FisherTransformation fisherTransformation
- annotation (Placement(transformation(extent={{-20,-10},{0,10}})));
-equation
- connect(correlation.u1, u1) annotation (Line(
- points={{-82,6},{-100,6},{-100,60},{-120,60}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(correlation.u2, u2) annotation (Line(
- points={{-82,-6},{-100,-6},{-100,-60},{-120,-60}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(correlation.y, fisherTransformation.u) annotation (Line(
- points={{-59,0},{-22,0}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(fisherTransformation.y, significanceTest.u) annotation (Line(
- points={{1,0},{58,0}},
- color={0,0,127},
- smooth=Smooth.None));
- connect(significanceTest.y, y) annotation (Line(
- points={{81,0},{110,0}},
- color={0,0,127},
- smooth=Smooth.None));
-
- annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
- -100},{100,100}}), graphics));
-end CorrelationTest;
diff --git a/Noise 1.0 Beta.1/Statistics/SignificanceTest.mo b/Noise 1.0 Beta.1/Statistics/SignificanceTest.mo
deleted file mode 100644
index 04120c63..00000000
--- a/Noise 1.0 Beta.1/Statistics/SignificanceTest.mo
+++ /dev/null
@@ -1,27 +0,0 @@
-within Noise.Statistics;
-model SignificanceTest "Tests the input against a null hypothesis"
- extends Modelica.Blocks.Interfaces.SISO;
-
-// Null hypothesis
-public
- replaceable function H =
- Modelica_Noise.Math.Distributions.Normal.cumulative constrainedby
- Modelica_Noise.Math.Distributions.Interfaces.partialCumulative
- "Cumulative density function of the null hypothesis"
- annotation(choicesAllMatching=true);
-
-// Parameters
-public
- parameter Boolean rightTail = true "Calculate Pr(X > u | H)" annotation(choices(checkBox=true));
- parameter Boolean leftTail = true "Calculate Pr(X < u | H)" annotation(choices(checkBox=true));
-
-// Calculate p-value
-equation
- y = if rightTail and leftTail then 2 * min(H(u), 1-H(u)) else
- if rightTail then 1-H(u) else
- if leftTail then H(u) else 1;
-
-public
- Real l = H(u);
- Real r = 1-H(u);
-end SignificanceTest;
diff --git a/Noise 1.0 Beta.1/Statistics/package.mo b/Noise 1.0 Beta.1/Statistics/package.mo
deleted file mode 100644
index 7238f6d1..00000000
--- a/Noise 1.0 Beta.1/Statistics/package.mo
+++ /dev/null
@@ -1,19 +0,0 @@
-within Noise;
-package Statistics
- extends Modelica.Icons.Package;
-
-
-
- annotation (Icon(graphics={Line(
- points={{-70,-63.953},{-66.5,-63.8975},{-63,-63.7852},{-59.5,-63.5674},
- {-56,-63.1631},{-52.5,-62.4442},{-49,-61.2213},{-45.5,-59.2318},{-42,
- -56.1385},{-38.5,-51.5468},{-35,-45.0467},{-31.5,-36.2849},{-28,-25.0617},
- {-24.5,-11.4388},{-21,4.1682},{-17.5,20.9428},{-14,37.695},{-10.5,
- 52.9771},{-7,65.2797},{-3.5,73.2739},{0,76.047},{3.5,73.2739},{7,65.2797},
- {10.5,52.9771},{14,37.695},{17.5,20.9428},{21,4.1682},{24.5,-11.4388},
- {28,-25.0617},{31.5,-36.2849},{35,-45.0467},{38.5,-51.5468},{42,-56.1385},
- {45.5,-59.2318},{49,-61.2213},{52.5,-62.4442},{56,-63.1631},{59.5,
- -63.5674},{63,-63.7852},{66.5,-63.8975},{70,-63.953}},
- color={0,0,0},
- smooth=Smooth.Bezier)}));
-end Statistics;
diff --git a/Noise 1.0 Beta.1/Statistics/package.order b/Noise 1.0 Beta.1/Statistics/package.order
deleted file mode 100644
index c74bfcf0..00000000
--- a/Noise 1.0 Beta.1/Statistics/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-Correlation
-SignificanceTest
-CorrelationTest
diff --git a/Noise 1.0 Beta.1/Test/densities.mo b/Noise 1.0 Beta.1/Test/densities.mo
deleted file mode 100644
index e536cbe5..00000000
--- a/Noise 1.0 Beta.1/Test/densities.mo
+++ /dev/null
@@ -1,30 +0,0 @@
-within Noise.Test;
-function densities "Test functions Math.Statistics.Densities"
- import Modelica.Utilities.Streams.print;
- input Integer nPoints = 1000;
- input Real u_min=-1;
- input Real u_max=4;
-protected
- Real u[nPoints] = linspace(u_min, u_max, nPoints);
- Real y[nPoints];
-algorithm
- y := Modelica_Noise.Math.Distributions.Uniform.density(
- u,
- y_min=1,
- y_max=3);
- plotArray(u, y, id=1);
-
- y := Modelica_Noise.Math.Distributions.Normal.density(
- u,
- mu=0,
- sigma=sqrt(0.08));
- plotArray(u, y, id=2);
-
- y := Modelica_Noise.Math.Distributions.Weibull.density(
- u,
- lambda=1,
- k=5);
- plotArray(u, y, id=3);
-
- annotation(__Dymola_interactive = true);
-end densities;
diff --git a/Noise 1.0 Beta.1/Test/package.order b/Noise 1.0 Beta.1/Test/package.order
deleted file mode 100644
index 78d70186..00000000
--- a/Noise 1.0 Beta.1/Test/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-special
-quantiles
-densities
diff --git a/Noise 1.0 Beta.1/Test/quantiles.mo b/Noise 1.0 Beta.1/Test/quantiles.mo
deleted file mode 100644
index 8bca9158..00000000
--- a/Noise 1.0 Beta.1/Test/quantiles.mo
+++ /dev/null
@@ -1,34 +0,0 @@
-within Noise.Test;
-function quantiles "Test functions Math.Statistics.Quantiles"
- import Modelica.Utilities.Streams.print;
- import Modelica_Noise.Math.Random.TruncatedQuantiles;
- input Integer nPoints = 1000;
- input Real eps = 1e-5;
-protected
- Real u[nPoints] = linspace(eps, 1-eps, nPoints);
- Real y[nPoints];
-algorithm
- y := Modelica_Noise.Math.Distributions.Uniform.quantile(
- u,
- y_min=1,
- y_max=3);
- plotArray(u, y, id=1);
-
- y := Modelica_Noise.Math.Distributions.Normal.quantile(
- u,
- mu=2,
- sigma=3);
- plotArray(u, y, id=2);
-
- y := Modelica_Noise.Math.Distributions.Weibull.quantile(
- u,
- lambda=1,
- k=1);
- plotArray(u, y, id=3);
-
- // Truncated quantiles
- y :=TruncatedQuantiles.normal(u,y_min=-4,y_max=8,sigma=3);
- plotArray(u, y, id=4);
-
- annotation(__Dymola_interactive = true);
-end quantiles;
diff --git a/Noise 1.0 Beta.1/Test/special.mo b/Noise 1.0 Beta.1/Test/special.mo
deleted file mode 100644
index 3322d345..00000000
--- a/Noise 1.0 Beta.1/Test/special.mo
+++ /dev/null
@@ -1,35 +0,0 @@
-within Modelica_Noise.Test;
-function special "Plot functions Math.Special"
- import Modelica.Utilities.Streams.print;
- import Modelica_Noise.Math.Special;
- input Integer nPoints = 1000;
- input Real erfRange = 3.0;
- input Real sincRange = 20.0;
- input Real normalEps = 1e-5;
-protected
- Real uErf[nPoints] = linspace(-erfRange, erfRange, nPoints);
- Real yErf[nPoints];
- Real yErfc[nPoints];
- Real uErfInv[nPoints];
- Real uErfcInv[nPoints];
- Real r[nPoints] = linspace(normalEps, 1-normalEps, nPoints);
- Real rn[nPoints];
-algorithm
- yErf := Special.erf(uErf);
- plotArray(uErf, yErf, legend="y = erf(u)", id=1);
-
- yErfc := Special.erfc(uErf);
- plotArray(uErf, yErfc, legend="y = erfc(u)", id=2);
-
- uErfInv := Special.erfInv(yErf);
- plotArray(yErf, uErfInv, legend="y = erfInv(u)", id=3);
-
- uErfcInv := Special.erfcInv(yErfc);
- plotArray(yErf, uErfInv, legend="y = erfcInv(u)", id=4);
-
- r :=linspace(-sincRange,sincRange,nPoints);
- rn :=Special.sinc(r);
- plotArray(r,rn,legend="y=sinc(u)",id=5);
-
- annotation(__Dymola_interactive = true);
-end special;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/cumulative.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Bates/cumulative.mo
deleted file mode 100644
index 79be40af..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/cumulative.mo
+++ /dev/null
@@ -1,49 +0,0 @@
-within Noise.TruncatedDistributions.Bates;
-function cumulative "Cumulative distribution function of Bates distribution"
- extends
- Modelica_Noise.Math.TruncatedDistributions.Interfaces.partialCumulative;
- input Integer n=12 "Number of uniform random values" annotation (Dialog);
-algorithm
- y := Distributions.Bates.cumulative(u, u_min, u_max, n);
- annotation (Inline=true,Documentation(info="
-Syntax
-
-Bates.cumulative(u, y_min=0, y_max=1, n=12);
-
-
-Description
-
-This function computes the cumulative distribution function
-according to a Bates distribution (= mean of n uniform distributions).
-The returned value y is in the range:
-
-
-
-0 ≤ y ≤ 1
-
-
-
-Plot of the function:
-
-
-
-
-
-
-
-For more details, see
-Wikipedia.
-
-
-Example
-
- cumulative(0,-3,3,12) // = 0.5
-
-
-See also
-
-Bates.density,
-Bates.quantile.
-
-"));
-end cumulative;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/density.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Bates/density.mo
deleted file mode 100644
index 79ea17b2..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/density.mo
+++ /dev/null
@@ -1,40 +0,0 @@
-within Noise.TruncatedDistributions.Bates;
-function density "Density of Bates distribution"
- extends Modelica_Noise.Math.TruncatedDistributions.Interfaces.partialDensity;
- input Integer n=12 "Number of uniform random values" annotation (Dialog);
-algorithm
- y := Distributions.Bates.density(u, u_min, u_max, n);
-
- annotation (Inline=true,Documentation(info="
-Syntax
-
-Bates.density(u, y_min=0, y_max=1, n=12);
-
-
-Description
-
-This function computes the probability density function according to a Bates distribution
-(= mean of n uniform distributions). Plot of the function:
-
-
-
-
-
-
-
-For more details, see
-Wikipedia.
-
-
-Example
-
- density(0, -3, 3, 12) // = 4.7271067821068185
-
-
-See also
-
-Bates.cumulative,
-Bates.quantile.
-
-"));
-end density;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.mo
deleted file mode 100644
index a1232d11..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.mo
+++ /dev/null
@@ -1,50 +0,0 @@
-within Noise.TruncatedDistributions;
-package Bates "Library of Bates distribution functions (= mean of n uniform distributions)"
- extends Modelica.Icons.Package;
-
-
-annotation (Icon(coordinateSystem(preserveAspectRatio=false, extent={{
- -100,-100},{100,100}}), graphics={
- Line(
- points={{-70,-63.953},{-66.5,-63.8975},{-63,-63.7852},{-59.5,-63.5674},
- {-56,-63.1631},{-52.5,-62.4442},{-49,-61.2213},{-45.5,-59.2318},{-42,
- -56.1385},{-38.5,-51.5468},{-35,-45.0467},{-31.5,-36.2849},{-28,-25.0617},
- {-24.5,-11.4388},{-21,4.1682},{-17.5,20.9428},{-14,37.695},{-10.5,
- 52.9771},{-7,65.2797},{-3.5,73.2739},{0,76.047},{3.5,73.2739},{7,65.2797},
- {10.5,52.9771},{14,37.695},{17.5,20.9428},{21,4.1682},{24.5,-11.4388},
- {28,-25.0617},{31.5,-36.2849},{35,-45.0467},{38.5,-51.5468},{42,-56.1385},
- {45.5,-59.2318},{49,-61.2213},{52.5,-62.4442},{56,-63.1631},{59.5,
- -63.5674},{63,-63.7852},{66.5,-63.8975},{70,-63.953}},
- color={0,0,0},
- smooth=Smooth.Bezier)}), Documentation(info="
-
-This package provides
-
-
-- probability density function (= derivative of cumulative distribution function),
-- cumulative distribution function, and
-- quantile (= inverse cumulative distribution function).
-
-
-of the Bates distribution (= mean of n uniform
-distributions). Examples:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end Bates;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.order b/Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.order
deleted file mode 100644
index ddc9fbd9..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-density
-cumulative
-quantile
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/quantile.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Bates/quantile.mo
deleted file mode 100644
index 3b44229c..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Bates/quantile.mo
+++ /dev/null
@@ -1,59 +0,0 @@
-within Noise.TruncatedDistributions.Bates;
-function quantile "Quantile of Bates distribution"
- extends Modelica_Noise.Math.TruncatedDistributions.Interfaces.partialQuantile;
- input Integer n=12 "Number of uniform random values" annotation (Dialog);
-algorithm
- y := Distributions.Bates.quantile(u, y_min, y_max, n);
- annotation (Inline=true,Documentation(info="
-Syntax
-
-Bates.quantile(u, y_min=0, y_max=1, n=12);
-
-
-Description
-
-This function computes the inverse cumulative distribution function (= quantile) according to a Bates
-distribution (= mean of n uniform distributions). Input argument u must be in the range:
-
-
-
-
-0 ≤ u ≤ 1
-
-
-
-
-The returned number y is in the range:
-
-
-
-
-y_min ≤ y ≤ y_max
-
-
-
-
-Plot of the function:
-
-
-
-
-
-
-
-For more details, see
-Wikipedia.
-
-
-Example
-
- quantile(0.5,-3,3,12) // = -7.450831063238184E-010
-
-
-See also
-
-Bates.density,
-Bates.cumulative.
-
-"));
-end quantile;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/cumulative.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/cumulative.mo
deleted file mode 100644
index f0288248..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/cumulative.mo
+++ /dev/null
@@ -1,35 +0,0 @@
-within Noise.TruncatedDistributions.Discrete;
-function cumulative "Cumulative distribution function of discrete distribution"
- extends
- Modelica_Noise.Math.TruncatedDistributions.Interfaces.partialCumulative;
- input Real x[:] = {0,1} "Discrete values to be chosen from" annotation(Dialog);
- input Real p[size(x,1)] = ones(size(x,1))/size(x,1)
- "The probabilities of the discrete values" annotation(Dialog);
-protected
- Real x0[size(x,1)+2];
- Real p0[size(x,1)+2];
-algorithm
- x0 := cat(1,x,{u_min,u_max});
- p0 := cat(1,p,{ 0, 0});
- for i in 1:size(x,1) loop
- if x[i] < u_min then
- p0[end-1] := p0[end-1] + p0[i];
- p0[i] := 0;
- elseif x[i] > u_max then
- p0[end-0] := p0[end-0] + p0[i];
- p0[i] := 0;
- end if;
- end for;
- Noise.Distributions.Discrete.cumulative(u, x0, p0);
-
- annotation (Inline=true,Documentation(info="
-
-This function returns the cumulative distribution function according to a uniform distribution in a band.
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end cumulative;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/density.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/density.mo
deleted file mode 100644
index dfcae7d5..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/density.mo
+++ /dev/null
@@ -1,20 +0,0 @@
-within Noise.TruncatedDistributions.Discrete;
-function density "Density of discrete distribution (undefined!)"
- extends Modelica_Noise.Math.TruncatedDistributions.Interfaces.partialDensity;
- input Real x[:] = {0,1} "Discrete values to be chosen from" annotation(Dialog);
- input Real p[size(x,1)] = ones(size(x,1))/size(x,1)
- "The probabilities of the discrete values" annotation(Dialog);
-algorithm
- assert(false, "The density of the discrete distribution is not defined.");
-
- annotation (Inline=true,Documentation(info="
-
-This function returns the probability density according to a uniform distribution in a band.
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end density;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.mo
deleted file mode 100644
index 2d7d62b2..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.mo
+++ /dev/null
@@ -1,38 +0,0 @@
-within Noise.TruncatedDistributions;
-package Discrete "Library of truncated discrete distribution functions"
- extends Modelica.Icons.Package;
-
-
-annotation (Icon(coordinateSystem(preserveAspectRatio=false, extent={{
- -100,-100},{100,100}}), graphics={
- Line(
- points={{-70,-60},{-50,-60},{-50,40},{-50,-60},{-20,-60},{-20,12},{-20,
- -60},{0,-60},{0,80},{0,-60},{30,-60},{30,50},{30,-60},{62,-60},{62,
- 14},{62,-60},{70,-60}},
- color={0,0,0}),
- Ellipse(
- extent={{-54,44},{-46,36}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{-24,18},{-16,10}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{-4,84},{4,76}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{26,54},{34,46}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid),
- Ellipse(
- extent={{58,18},{66,10}},
- lineColor={0,0,0},
- fillColor={0,0,0},
- fillPattern=FillPattern.Solid)}));
-end Discrete;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.order b/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.order
deleted file mode 100644
index ddc9fbd9..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/package.order
+++ /dev/null
@@ -1,3 +0,0 @@
-density
-cumulative
-quantile
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/quantile.mo b/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/quantile.mo
deleted file mode 100644
index 9f433ea9..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/Discrete/quantile.mo
+++ /dev/null
@@ -1,42 +0,0 @@
-within Noise.TruncatedDistributions.Discrete;
-function quantile
- "Quantile of discrete distribution (= inverse cumulative distribution function)"
- extends Modelica_Noise.Math.TruncatedDistributions.Interfaces.partialQuantile;
- input Real x[:] = {0,1} "Discrete values to be chosen from" annotation(Dialog);
- input Real p[size(x,1)] = ones(size(x,1))/size(x,1)
- "The probabilities of the discrete values" annotation(Dialog);
-protected
- Real x0[size(x,1)+2];
- Real p0[size(x,1)+2];
-algorithm
- x0 := cat(1,x,{y_min,y_max});
- p0 := cat(1,p,{ 0, 0});
- for i in 1:size(x,1) loop
- if x[i] < y_min then
- p0[end-1] := p0[end-1] + p0[i];
- p0[i] := 0;
- elseif x[i] > y_max then
- p0[end-0] := p0[end-0] + p0[i];
- p0[i] := 0;
- end if;
- end for;
- Noise.Distributions.Discrete.quantile(u, x0, p0);
-
- annotation (Inline=true,Documentation(info="
-
-This function returns a number according to a uniform distribution in a band.
-This means the returned number is in the range:
-
-
-
-
-y_min ≤ y ≤ y_max
-
-
-
-
-For more details of this distribution see
-Wikipedia.
-
-"));
-end quantile;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/package.mo b/Noise 1.0 Beta.1/TruncatedDistributions/package.mo
deleted file mode 100644
index 2697c942..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/package.mo
+++ /dev/null
@@ -1,14 +0,0 @@
-within Noise;
-package TruncatedDistributions
- extends Modelica.Icons.Package;
-
-
-annotation (Icon(graphics={Line(
- points={{-32,-38},{-28,-27.0617},{-24.5,-13.4388},{-21,2.1682},{-17.5,
- 18.9428},{-14,35.695},{-10.5,50.9771},{-7,63.2797},{-3.5,71.2739},{
- 0,74.047},{3.5,71.2739},{7,63.2797},{10.5,50.9771},{14,35.695},{
- 17.5,18.9428},{21,2.1682},{24.5,-13.4388},{28,-27.0617},{31.5,
- -38.2849},{35,-47.0467}},
- color={0,0,0},
- smooth=Smooth.Bezier)}));
-end TruncatedDistributions;
diff --git a/Noise 1.0 Beta.1/TruncatedDistributions/package.order b/Noise 1.0 Beta.1/TruncatedDistributions/package.order
deleted file mode 100644
index 01c36113..00000000
--- a/Noise 1.0 Beta.1/TruncatedDistributions/package.order
+++ /dev/null
@@ -1,2 +0,0 @@
-Bates
-Discrete
diff --git a/Noise 1.0 Beta.1/libraryinfo.mos b/Noise 1.0 Beta.1/libraryinfo.mos
deleted file mode 100644
index 417ad663..00000000
--- a/Noise 1.0 Beta.1/libraryinfo.mos
+++ /dev/null
@@ -1,17 +0,0 @@
-LibraryInfoMenuSeparator(
- category="libraries",
- pos=100)
-
-NoiseVersion = "1.0 Beta.1";
-
-LibraryInfoMenuCommand(
- category="libraries",
- text="Noise "+NoiseVersion,
- reference="Noise",
- version=NoiseVersion,
- isModel=true,
- description="Additional noise modules for Modelica. Version "+NoiseVersion,
- ModelicaVersion="3.2.1",
- pos=1500)
-
-// LibraryInfoPreload(reference="Modelica_LinearSystems2")
diff --git a/Noise 1.0 Beta.1/package.mo b/Noise 1.0 Beta.1/package.mo
deleted file mode 100644
index e45fc63a..00000000
--- a/Noise 1.0 Beta.1/package.mo
+++ /dev/null
@@ -1,24 +0,0 @@
-within ;
-package Noise "A library with additional noise modules compatible to the Modelica standard library"
- extends Modelica.Icons.Package;
-
-
-
-
-
-
-
-
-
-
- annotation(version = "1.0 Beta.1",
- versionDate = "2015-06-22",
- versionBuild = 1,
- uses(Modelica(version="3.2.1"), Modelica_Noise(version=
- "1.0 Beta.1")),
- Icon(graphics={ Line(
- points={{-84,0},{-54,0},{-54,40},{-24,40},{-24,-70},{6,-70},{6,80},{36,80},
- {36,-20},{66,-20},{66,60}},
- color={0,0,0},
- smooth=Smooth.None)}));
-end Noise;
diff --git a/Noise 1.0 Beta.1/package.order b/Noise 1.0 Beta.1/package.order
deleted file mode 100644
index 67814b3c..00000000
--- a/Noise 1.0 Beta.1/package.order
+++ /dev/null
@@ -1,9 +0,0 @@
-Examples
-Sources
-Generators
-Distributions
-TruncatedDistributions
-Interpolators
-Math
-Statistics
-Plots
From 510a7d08ee20371e2e5f3bf98ed316ee4263a590 Mon Sep 17 00:00:00 2001
From: akloeckner
Date: Sun, 28 Jun 2015 17:15:57 +0200
Subject: [PATCH 05/46] typo
---
.../Math/TruncatedDistributions/package.mo | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/Modelica_Noise 1.0 Beta.1/Math/TruncatedDistributions/package.mo b/Modelica_Noise 1.0 Beta.1/Math/TruncatedDistributions/package.mo
index 0d39b858..eff7e004 100644
--- a/Modelica_Noise 1.0 Beta.1/Math/TruncatedDistributions/package.mo
+++ b/Modelica_Noise 1.0 Beta.1/Math/TruncatedDistributions/package.mo
@@ -91,7 +91,7 @@ cdf_max = Distributions.XXX.cumulative(u_max,...);
For an example of a truncated distribution, see the following
-plot of the probabibilty density function of a normal distribution
+plot of the probability density function of a normal distribution
compared with its truncated distribution:
From febddb6293836f57cbed52534da364e9d4ed5caf Mon Sep 17 00:00:00 2001
From: Martin Otter
Date: Wed, 15 Jul 2015 10:07:55 +0200
Subject: [PATCH 06/46] libraryinfo.mos corrected
---
Modelica_Noise 1.0 Beta.1/libraryinfo.mos | 6 ++----
1 file changed, 2 insertions(+), 4 deletions(-)
diff --git a/Modelica_Noise 1.0 Beta.1/libraryinfo.mos b/Modelica_Noise 1.0 Beta.1/libraryinfo.mos
index a032432e..ddb79353 100644
--- a/Modelica_Noise 1.0 Beta.1/libraryinfo.mos
+++ b/Modelica_Noise 1.0 Beta.1/libraryinfo.mos
@@ -2,16 +2,14 @@ LibraryInfoMenuSeparator(
category="libraries",
pos=100)
-NoiseVersion = "1.0 Beta.1";
-
LibraryInfoMenuCommand(
category="libraries",
text="Modelica_Noise "+NoiseVersion,
reference="Modelica_Noise",
- version=NoiseVersion,
+ version="1.0 Beta.1",
isModel=true,
description="Modelica_Noise modules for the MSL. Version "+NoiseVersion,
ModelicaVersion="3.2.1",
pos=110)
-// LibraryInfoPreload(reference="Modelica_LinearSystems2")
+// LibraryInfoPreload(reference="Modelica_Noise")
From b60d2aa4aeb7848c10ccbfaa78744b3e127b5e71 Mon Sep 17 00:00:00 2001
From: Martin Otter
Date: Wed, 15 Jul 2015 15:41:17 +0200
Subject: [PATCH 07/46] Removed "impure" prefix from 4 functions (in order to
be strictly Modelica 3.2 compliant)
---
.../Math/Random/Utilities/automaticGlobalSeed.mo | 2 +-
.../Math/Random/Utilities/automaticLocalSeed.mo | 2 +-
Modelica_Noise 1.0 Beta.1/Utilities/System/getPid.mo | 2 +-
Modelica_Noise 1.0 Beta.1/Utilities/System/getTime.mo | 2 +-
4 files changed, 4 insertions(+), 4 deletions(-)
diff --git a/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticGlobalSeed.mo b/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticGlobalSeed.mo
index 148e6d2c..bc06bfd7 100644
--- a/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticGlobalSeed.mo
+++ b/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticGlobalSeed.mo
@@ -1,5 +1,5 @@
within Modelica_Noise.Math.Random.Utilities;
-impure function automaticGlobalSeed
+function automaticGlobalSeed
"Creates an automatic integer seed from the current time and process id (= impure function)"
output Integer seed "Automatically generated seed";
protected
diff --git a/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticLocalSeed.mo b/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticLocalSeed.mo
index 55485b2f..4b4792d7 100644
--- a/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticLocalSeed.mo
+++ b/Modelica_Noise 1.0 Beta.1/Math/Random/Utilities/automaticLocalSeed.mo
@@ -1,5 +1,5 @@
within Modelica_Noise.Math.Random.Utilities;
-impure function automaticLocalSeed
+function automaticLocalSeed
"Creates an automatic local seed from the instance name"
input String path
"Full path name of the instance (inquire with getInstanceName())";
diff --git a/Modelica_Noise 1.0 Beta.1/Utilities/System/getPid.mo b/Modelica_Noise 1.0 Beta.1/Utilities/System/getPid.mo
index d1d0965e..d81ac3b9 100644
--- a/Modelica_Noise 1.0 Beta.1/Utilities/System/getPid.mo
+++ b/Modelica_Noise 1.0 Beta.1/Utilities/System/getPid.mo
@@ -1,5 +1,5 @@
within Modelica_Noise.Utilities.System;
-impure function getPid "Retrieves the current process id"
+function getPid "Retrieves the current process id"
output Integer pid "Process ID";
external "C" pid = ModelicaRandom_getpid()
annotation (Include = "#include \"ModelicaRandom.c\"");
diff --git a/Modelica_Noise 1.0 Beta.1/Utilities/System/getTime.mo b/Modelica_Noise 1.0 Beta.1/Utilities/System/getTime.mo
index 27bd05d5..ca8a85d2 100644
--- a/Modelica_Noise 1.0 Beta.1/Utilities/System/getTime.mo
+++ b/Modelica_Noise 1.0 Beta.1/Utilities/System/getTime.mo
@@ -1,5 +1,5 @@
within Modelica_Noise.Utilities.System;
-impure function getTime "Retrieves the local time (in the local time zone)"
+function getTime "Retrieves the local time (in the local time zone)"
output Integer ms "Millisecond";
output Integer sec "Second";
output Integer min "Minute";
From 4c49b6e7b497ed812c4accb36bd2159c103c1124 Mon Sep 17 00:00:00 2001
From: Martin Otter
Date: Fri, 17 Jul 2015 09:12:35 +0200
Subject: [PATCH 08/46] Moved images from
Resources/Images/Math/TruncatedDistributions to Distributions
---
.../TruncatedDistributions/Normal.cumulative.png | Bin 6707 -> 0 bytes
.../TruncatedDistributions/Normal.density.png | Bin 7465 -> 0 bytes
.../TruncatedDistributions/Normal.quantile.png | Bin 6512 -> 0 bytes
.../Weibull.cumulative.png | Bin 6364 -> 0 bytes
.../TruncatedDistributions/Weibull.density.png | Bin 6463 -> 0 bytes
.../TruncatedDistributions/Weibull.quantile.png | Bin 6887 -> 0 bytes
6 files changed, 0 insertions(+), 0 deletions(-)
delete mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Normal.cumulative.png
delete mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Normal.density.png
delete mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Normal.quantile.png
delete mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Weibull.cumulative.png
delete mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Weibull.density.png
delete mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Weibull.quantile.png
diff --git a/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Normal.cumulative.png b/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Normal.cumulative.png
deleted file mode 100644
index 437572b46f70b544dc5f6bd132fe38b9c77e5be3..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 6707
zcmcI}cU)6lx8?ywih$CT67*FNq)8V+11cS)mrz0zq$vlKkIo`UKkr{v$62A006+I
ztD|8G0CafpIn8tmtcm-3C>8u+M(9}k0Ra1_wVn15;kbSHLwwL=m$&Dg{Ahrq8;rB303K|0IV7$8td|9$esJ^J6poaEh(mMph!`m{6Pwi&!6PNlc
zS#dk*>qKgiXA?GC#d+3W|JyAp2LByXA07HJersZ5M}IcJnL2zD)_S}u*w3;C%F3tx
ztf+~xKX%CLT0OPfMWxte&gs>ay6cl}c@LypcA6pR9k=p@;mws6iikmjD`zl!;R0q!
zAZ=o7ZE)(NgawXZQ=T8-@siv0#TxZ}@zN0G3z{q$DjizXKRDr;VE}Etr?7<|tSGCI
zG{qtHXf7N|n6LU1eMsf(>du09Qy=|ZJ@B=G8{eO7H_rzdRQf)o6|T1^?-=YzL*fvv
zuBm0D2@LCbwLh6&7c<;Aw{DH5mJV$z9U?j02wPLylM68mJHzF>1?j6Xszqx;ft5&xwFUhjdcz485A_M^$vLX^
z=e9!+dNzY6NCt@Qnpv6wwdjmb)Bfn9MqP|Wqnpo%zCe_9ZoN?+h_1YWfmh&
zq@07!gHK!+_GY<4zHc1ei*A`1D{m&DySiO%UFVd1ypNvw!=-|85dR*b;d`1zE&KYd
zL<}-quocT&H}uv#bW9(*CP}@80jFlEzico*7-wJ0kM>k8x$aRq{&Jt1Ai7dIWvVa4
zc6pFD$yJUgA6@&i+dHXAS+JGLU&bp`ibmR%X&xSsN34YKeY}-0_+k62*XF%xdvV*d
zeYNigjjRGhU2_B|y3+Xw4xK|5Hi)+9cQ0_hw%DU_^4I
z{MB|8UUaEn5zQ{u0=d-`RXcxaF!AW|pZoYbqF;{2sS=}#1Pq@a8;vkrAu+{-PucoW
zUqsq{cekzBW3Bys(!|)`b0#C?EY)ODeC_trsRuc?e-*A4O1Jd+zmz10(ss&kJ520t
zDsn}$bcJVHrrAc?+Q2k8(6i65{A@69=Ro1vs=%QA2)6kO!$Hp|$L7MdCwU>?)r}T)q^)Nv
zYw0PuEt&V4%M|uluFv$Rrq@Cvu>5EVC3GujQ5KpozcX)BUn?8Skxiuf34|)lHn7_c
zdVX3DYoboX(@-`oF3C=9EUJoGliM#9`@Jyb-y9@z9=cplOZmK042Qv4I~7M<%1E@D
z;?jR$OFqy_a<7O_kbcK4bMk_v_I~08Pp;wp*AIe1Co2;ywX212&7t+k=2tn0KLyqS
z$(0*<7^0Kyp(j?_=i=b52u?~n`?n%Q^Csyd)f_|pfeEr-dpd*H|2rk8epWwcZoqim
z!l;XEfO`xTt4B4Y32x*5*x4Cyf#63CANv>RyXF$0N|=ZN&5f=)C0k4#sG{vSsrhgG
zryCr08hjGJ?@&2_JO1c{CK&&pFgQCBq^`OSue#+r+p
z4*W8g9eJLsC3RftH!m$aoU&>CT+s0p&NS{f&4~Fo
zmx(7A#Fnjb#3bybXN_1b=4H%bO%5MT)8MVI>K6)DVR>Kuu2Mpz8a{yNhkZx?55~2*
zlU5&$(%D*CQ)!J)tD7z=GO`c|6l`Xa!vX3~9g8k|V5N>HdvIM0PhAmoca7(k>-=an
z`l^Olry^@yAY>H(Xns&f1zBlsksE?Ka|LCvR%U7Hy81+cJzaZj?PcBO{VjOLz&*@b
z{_honJmtpY=Dq~}>72kTb>#YVO39~9*^MmcTfd%D2E?7zW*V(TM-!KB2oM8`SBa*V
zB`Y4z)U$$ap_9o<;nOHmTULDXtNHzq9tZlo8whw__Abd!wn?{2>O(HM-e}|878q1|
zXVI5vUvK|tY`1?xJEuHhs#TEuok$;NMuAJ~&h6Z*89TJWR-;F|y6b$*3(NLq$+)u{
zqZS<_&bE6O4o9mDz_1|HHF?p8nekEJ)S4AD&BX8QuI-fIpkKhV#(Hu=!McCKeA=KN
zq0XcPVQxkZteZ~?WD~4GH!?*&v^UhoNc(v532ogntHhF-4cN34{Ux-D#x1;RFDxgt
z-6E{UE1Is+m>Lz=S5f%^Tp78$#>?dinMO$KGfJU4(lrXN|7HfE_WgMtuYGdZ`f7t>
zMFmn!%0pqJPuG*MQUg*L!mM}Th<6|`H5TO4T+y*VrGSpE+}*!NNY-**e-h@0fsI|p
z#4J00SNv5$wXnJpT+qGK+~YlX`#{U(ts*1nhGh_ip_B)9zN`0mXZZfo49Qv3i*UZi
z4-%(a`ea!jbUTmAq2h@wMkv1Xy12|{52Aem46H$-omZZUI*qWe}Uo2Z%rgxS89hflPrimj+=d#jMkmArg&?*Z+@
zyRaSIP^_x%vd~kOV)?02A`$|vU*iv9FikmgpC0hmPDI#+ppt)xsoFFI?oCv#DhgZC
z0S#BQ8msZ0K)HQ%)`&Hd^z)3LMx%Ne-HH*0N`N-Zy_^m_&ki(gCe{P
zwl~u}QdZ=5sHT2o(c*Ff@E)Rr;)_l>$sbbhlpq`nuK~cda{=!3K)YNg4*(1@9dCya
zoDQgpM=<=iSIRr_M!Pwb$leTnJ4z&8JJHCDC6}9)a@(DfYiwzgZa(Q!`)1TXG!#?7
zbb!xTdsUEqKVJ5D>F-}##dSYJni?B5*WkX>LOe)fwzJ&!qn6svvblsOv`^bDdSa}F
zsLIYN86Yb~R_%<(u3>8kylTZ$aPRqb%{gaPho9NYkR(Z#)h7D(;TKN_uL
z2A%`kgsJmP>L;8wy;}3F%04f!#a|=k(`UCvJ9b
z>mj(9f#+NS`HXQN5?XvagRxaLtlUXC62PMmxAq5($?KQkbhm3%_if)NwYFC1OP?
z6)0621+|M7c|yz}hLKKA
z0G|B3+BO>H%hbu!?tk;w{VR8QdjEpc!Hb2|Q*U?6f)mEOq1N&tDHx8js&E7YLXcgj
zk4DRtrWZAL0%!eoa|tq7SR89MNHu|srpjvd@HW}+3*Tw`4NcI^WC9+2Iec_)q`%2T
z)e!V;IH@$>6S-FjJ(JkOha(=@A+ePEoKNm^ILZI)Jurjj5Kw+z)$XA8GO@9=m
zC2p&zibUsX8=yhT&Bq@qhVXtW?Y;@mAXw}=UDXcXV-un(PUbc3H%uRzc0KQY4=1XY
zhze2)@^f5brXB}`wgn#sU%N6Sgrt!7f=Sr!)KV{D(sc17ig5o0^f3vRX7C&^$-{Wq
z;T+zkoOCe5&9-5K8nW@{GtL-AEX&z-MXKvK$8T(G+&_XvcHh4P6)O?7njbAISSJ;QQ06PRY#plerCibstCO?n=+}u7vhN$pQ8P3
zmYsqI*z4RLDIu#liRLCE%II_6o-$>nwz6`mXwUrcv;z|(w6&e`9K_vxt*mD6s-eD6
zg7PZMUl>+VgQmUn57Nk45B>6FAdikrBC7Z@geOOYftMCN#s(QDuR_49ZhS!*S$;bM
zRI~$^7F}uE=Dsh$)9=<>O&mAtF1!q<;}*RHU9J2!4z`G`7PVrwfP>i39yn&(%?5f*
z*6`lB=xs~ib+8kWBP9L9mmA2z=Ao?IaMmk92uanuTz@Q&zLRS*^%gW
zDfwt8$FC=uU|-LT*)kZ$IyrrvI$P1+Kjz2a&D_=AZv7c7X#S|rKPiE**@lPPR*|Zs
z-)W%fi?v628Xq6+6V;MeD(Q(Djr90MpzIJKxfc1xg8
z9W*0Dz)QY}OAo8L47RV~sE8Cdw%Lu2g2H-u`J8_sS5rKDtK=!F4D%(?
zBkyp_xGuf9l0W=y-G7X7{!&omp1gtQna9Gq|4`=n{%40DqSpfs%4Wnl8Vy{ti{Tus
za7fE}1qKxK%q;TaP18^+p+~q)SMuEH@})
zcts3S5yJSg*RX`&caamZxS8$e#m*fav99KMcB7|kg70ClhEu!L^Yu#3iuUgB>;|{#
z-sfWp9pGhvfuU*SQE|k;uEkf4_oI)qhjoULGlPxsbpHQHYkM;Bk<-!~-Mc3V>
zWw74_6YQ`2Pk!ZNp`2yFrz)8${DRT=uU!kk7W|;;>AeXSnZe?zRto@(SK(4YekqO&
zRg8-)6`ySx98WLCzD-}96zgF5i?NeONn(qlb5bHKiwQPYFcjGD2BU+tgEyU^d~XN^
zBW~?B4Ysp2x3$p@163V_4I8jgi{Dsw^a)gpQuA1leW*~WRK3{GcaiAXZeHgn0RibU
zlwGNFr%AfLFDReR(23p>9k+$LNDWS@V#(=6IW=``$DyQ4Rx-XkjrNhWz)a_;*2x1C
zgIPZA;5;T%@ND>biAs(NK=Lx&m*+827+i*^M&q~lQu2=j!`0Eo!}}+Jz9h0=w`Oce
z11T8WN3gwOMVEDUF*dH|AZjT?J=Mt(a053+k6iK!ewXJq9TV(zTB;=6X}LA#@Byz`yE<<$OQ>T#T`FdAtH|E+)fwdEjh;4Ya
z{KuB3X~Exv#ls{t8W-N&jZla+WEYCacRaTNu0$@2h5`NGlZg`ye#*SD-Tj&uf
zH*}z?Z~%Y(n9Q@MqpZFJ8hgo2y8R{gXA)sL5#iUa0BV6INLMGQ$u1semI~5MN{WR0
zQy!{rbF)w0%Q^*w&A$5AsNdwq4*=ebN*j#-?G*msY6TjMZ~jQ!na3A2
zo-T^tx5N?I=-QipVN+ZkT(hC@e9>p$4PV2`{0-Wk`K4R1RC{r4<7AG7W-}$C7e!;Y
z6t}Hj0=!GdN^kD_J|CCjb-T%3VKmUDHy>%8L^XyN=LVLaEsJg9NFvT5S_
z9ft%k8FJ}nBlm>rbKwF~nm)yagH%eEv987PVB;Q;;URGD*EBfP6;fi!rN0p#q*!yv*w6#
ZCg6)EmqWQO_-_oLt7)i#zU%nxe*jSK{p;M1Tl4g)%KD`2Ffjvm)oTJDKh<@Gr48C2^3rj^CqV
ze8dy6E<<5orK>J^mn!fS5&ex!m4OlfSlR6uo+BC-W8$R&+*hSE0|2Pi`bYr=3~J1P
z@JI%DX=R+Sz0S($SSKRzuZ#Pz$@}fMye%%BqVt5~t5m_Ydb|9SZ#*#@;1Qu`xs2I$
z;9MDZe*x+7hd4=hIq31P+i31iF5UzXluMX0a;OVBQMv|#pBZCwDnE=@a)f;fJa1Oa
zWLyn%DQ^GFGg8e-Sk`G%X|A-r@ITV86F&}t4JjsshJ`CJz?(SqOvMpZLG*V8%{OCi
zzE?3A@LTQ4PXVU%u-1RwAK@-V28|9F>DQX+*FVq5s7tI1>^_My`FfABxqb((^OYsW
z$tDD^S7FV#zD_>@YWB8x*wd61d=^$T`D}k?@~713DXWaah{{KI{OA(qyE}pZD5~m9
zN_%3Xc!e4ZZv63cf--^2WMAvxht8{6fjAT(RYi@NrNqP&)P5+VFoyOELG%pu-Cd(%p`u4$ly&?2y1w>f7#ry*t1K?HEAg=vr<}8l5-ytR4!ybmTzVsIwU4;ZWyC3v=+h=i!Z8%By%gR^XwU?v96!#
z^7D?W-!<=YXWQ)M!v>YLrYXWniCz?(xBJjD=byrN<$pJMOwLL-O7{T^MHEud
zZcOq@?iAN-2bUD?AZ<^lWawvr`}@r5eg!A%7spW_AAAm?cpQ`3z54Sq4&MR`{eAB)
zkhu36cuU(N+ujHDj8z33u=*NKTONqq0)<{N(mTAE1-3Qxw#Zwxm438lmFyiB7pl0p
zwHGu5`id_)l)J7x3Uyl|C=}~=P^DCz;aDHED-JR57jH9`76+e^$&Q2(0kR-i#rY1A
z3pEPy#K{HAaf&;D9xAySc{P;Oq5Wj%KJ`?lNi0_2_G5;p4u^BuYLh{t-=Sy0hWnDU
zw-0db_uGyv%G?ElxGwh#)xD|C9Z;2z5ja(E{1OTo_E!zDP
zx5U}#RB}K8PqYXCK+fwx0uZG94-o(7(gbNQ$HX*=85ugn3K1xD!w~ktILqa&5vR;9
zja@U`ZmQ$QIm?S2OaW;_$Mz0rDGPx}Y>wX915Gk%QO>C8uK2HQK_f`3ssh(L>C?uM
zzO%@@<3r^!jmpgpzvJlDHF2pb930Vn<;gG#UAfagK&j$=4xJ-6ij%G
z0d7cSn>WIZ^`}lVY&!Q&&KtSU9`1ohK(47rNAotI`QV8*zVFRb_CA%4PI3!jVtYRC
z@^@y%j%y|TrC95vjS-dp+WVJbRi1+i+8~>#$yP2RBHeMYx?sAzpsb;wvU-aBj-yxQ
zTC-=H^b_7z&06?X`iaM-ilJCfx0$ghsJn1O*(4@k^!L9qu
zSyJn`5J;+p>_Y7r7X_P4P!QWmR+H2bo4s!9uvh+jqYB~S-ECg*U?A70ul;u~_C$6T
zrCB?;y40_gnV25b*Wx?1x}Gy=2;0{mG2r8KkRE@hhyp#4OoBu@u0wjSb{siS`TmmU`#OzV2(wBiwnUP&n#v^99P|CLG6X->bUQns}=){P-&
z-AhqFp?d4lnY2ZDxtvYt6$#OGT_pIgTHlr|ifm7$?eyCI`|Kvk`WMz;J=aIqVM3`&
z#{0TSpYzWiW6(|Okk@txZ~gTp^qzkUnt42v+@3p8i-=j3MJE%6Yg1}8R;nw__DTrv
zM|H;Bis@A(@e=v(qo$aQy|AgUoEf#eL%hT5I?q}nJ1kxvTRKTladG#5h^ppP=~ea}
zJ#{TS4jFz-U7r8_Y$}fRfic`T{V?>y=_Fxx`&rkruNI!&xV-!n2UVy$^JA{@Aqa+W
zF;_p=2m49!bxrM6-M0CGHLJ2OanszfU6Di4ftM~QS9&U=-UL>Gm!QpZ((|mBse9;-
z@*4Kei1$*TWXe$Q+wI!iT0J%9w0Fp32Hgv2D}XIFy|*6fn+O6Wb}gb;#&Nm3Kzl#s
zj;jG{A#EY${x=Tp?!lFXKj913A*?v7AQL_HMB{}YpROvMZlKUto~yKJCV^08C45OA
zt>j$s>{boq$iss+6vsF!_$p=#rh=~faz3f}iLT}}SQnkvV}uucd2C(flMu``+vS-b
zA<*WoF1-5j&Yw$ff=A*%JMX;jNy-CVraPOi5EhH0iVUXEugQ1}v|-J23n*Cy;P_SHO-_Gdi?cx0tvu$P|~5kP43s7i{cnn1xc*}?pFW+q@-zy
zc(eZ{`D0m%00wk5m}tVQdqc_EUr72cXNVX$_M8WkeQE4PhY|3$Nl#)@$;%e5ld$HBN6@T9rjqw>TiUXS3Cq9MnI?tuIYdYbX;LwTH0k6C6+J}HSb6O)dJBLG(KG8$kdUOpGIB{n
z;uzxkUc;D%zc8I#PxQ0Ucu5?^&do}02tbWlHbcAIdOSMQot8jnDG`$pVbs(xVtc}x
zs?kT<-P#aNceM`C)qUT#Qp&PO_KekZxII0$NwTMpl`kM&>641fC#jz)Zfpj&(ft9y
z`lcsucoou6@5=YcsXw=`ahiUT!_Xg2WUnHX3%or%JUez#@#3h9rsg&!ANBC@8X7ZV
z`Fdb@oXo#&oifz?ChkR9)tB){N$XB|?qp?Ak44#;L@N`m`hsYN*aE!ywUT$)?uvfS
ze{~uqK#a`8@;qn8i1_IXW#2aQ+}4{V*clZv(aQUw0?MbCl#;lPr2UG&AXKsw=_i8P
zhGBmN7AUo5z;xF=^kvD|8kQ}0n%mm6o@4XBxtf+A9L)sP&mO*$C^>oJy}KizH8ZOL
zy<*P-uW!jZC<(4#?IWgGAb#pt>pUgRsrDV{155iO(ZDQ!nIq3s@8EvcqU`Kq&aS|U
zDe!Eq`pm2^7OPPS@%1Uh7Kb?N;@;x%XQqVngS#$CS|0YJvFR#j&d||#g#EO$H+Dxr
z^^Y}Y8O!Y-pCs5fyE0e8T<(E4hU0X{a)l^K$yIr((7;*(Q*~#z{NhcrE_SSjzGbos
zHVunA@up@Hd;8wrQgC2#sUc=L;9ZuX{@8)6fkpbgH1O|GZzRxLrZJMaDMI6i4>r!1
zRV_{es44>!X&l0I8kB$xw9EP+*7HQuj|#}cz8I1c6UeIH7(_dbx#>lnK!p>Pxg~4m
z3E6geL7ki*vL)rj!27V-l0|J~=_>=gQ<<7Nyv&kE$a=0Pf54rDOjL|ah7#b$bVtMT
znOY*uHfR|>PQn)-P{m!PyqELK(Mh+&?C;v7iC|aaidsqRdO*z%HA@1dk
z5sPGI2~Q<=TS<*E=3;BefQngzG#5dTCC1cSy&9hnAxZssX1Hx!FkNnJg8EGwe%@y(
zZ@|XcXHV}z*nsf+S$syn%)6w7rpn$7h!;kdIz%*a#N48q-t#U8QJDj2d1*9O8LAg|
z)+nd;j&`N@Ip
z$<*faw6Cvsyy`xZzw=D)BCDfl57KM=-rxxk-lTWgM48O3Cb_+ukxBG-O@1WzQ|G20
zL_R4>|K(Dpk|3`d^VDh|HSlqF+v7Ue`F=n
z1-DtR&m|U(h*r-Z$M_Zu~`)#
z1?fWl1ue2e>zpmpXB&Q&FAO>7_D`zht!I=e1s)@Ic9QTL>I@sVq`w+A9BT{NWV;|1
zw__4=6{MW_LQc}p>64u3=HzNzZ&m87ytea{Fk0@_xc}t}>y3wgoWY52WVi(Ek0dl8CrX;fM3bd`ma*mXo&%w|NHKBu>vmYyN
z;u^KDYpv)A^|f#-f@Dyd0U4P@{HMzwl@vZ83Kl>Fm-Dq+#AlDowc&+R#EiepBZ>BIa$*rKn?0Fpqh|F)HISWC3lhXVhUDIM7%Zn3e81Qx~^3}f(ML{
zYTj@#qlX?8r0M|03%;vx!44(TH~Cx7G9m1|E?(5pBK_`&aB{b+b+Y7Y%ozbt
zi==FsqMYea1AaB;RY$`-Ha?gMxa=v%H=KrDnHdN1<>bsLL?9JNkZ4@N0|`pA*C~#j
z-sz0{Y7Y_$8Q_8}LQiwPTTc}{e3#3wy8s@M%pZTd5*IE`CL$DG&@CaN?ti24t|^-4`ty(>h03L?Tl9Go;6x^}
zh{#T(uz4*i`}^m>%Ngn;OAP+J7;!02<*oU&l^>WIxv4RNa@=^X5NkshVH|I7ba0{(
z{!QP{Kn^f#JbpXOU24p}IhrkG{f**wNu0z(8JX2)
zBr%_UP*UJPe&8{f74F)zJsWOy3jsD@pXZsDVPC_-ujU%=#4W=
zqZEhCMEPIu%=MFgK@_elrh%oM+4L_C?~RwsuVI`OVI%^|s*@x%z&PZ01F{|D-_g{d
zX&oC8dj1#BGcR(<#^pOMGb2^kOoP?DL`a!S}!%I2s?4sH4y`N|CLuE5kr-6#v}W%
z10mwZ-sEudN;*}VxYP$+BBXDqnWtVBkn<)i-_f9Tm<@CkjKmgRh0AiNf9tfSoW-d3
zE!_cDcUrT`x9dfVVEuidt#_Z1oPQhnb;RqC#*U>6S5g+A`f?$rc%MS(X{WXC##_XY
zV^Mnd=(Hgq*4FoApLp0?2{I9gNF)|6VVM{ONu%OX87)}l^D`@T@L~upytI;l77lj0bi_HDV
z%U|Nj?{O%4SaGfPsT?+A`&)*@!yeY=SA$fmY^LvC6)zTw1L;SR)k_9Z1dX+ZjY2
zlagE89O#+9)LY3)w)S!3(Mt&@?~g5j-D*ue%FL4C_S<{py?ZpB1KuROef0n3gaeP8
zdN+c|1xT3%^Ea%5DN&&6f8-UG{650~d7uIsyQooW9kEqV2D>sWMnUvCgQ^9czcb6!
z7HBwgANhvQW+2e$$mUG6&%uofa}?C^j%nL`meJbSsovZ()Bd<6n-t|MIQuFI>mY0d
z{R&o^sdKHLJ)e4;jX-!A_D^U&Ih}n)Y)yVMf5*{c01_Gdur|gz2hV)H__bCK>)emm
z>(}fsM>wI`gSMc#u#2e?%~&A|s3Jnx7)s12j$nP4d};UO@%i8j1y4sz5xia?VHM(K
z(dDJymX-GDXo5Ai*ZQO5_StjRCJtKe%vbns!C7_kFMs-ubKu9~bpwiMVaUvq
z>VPx;T=v%{wLu%{)QhqP#ioj-7krix7!6~KD?m6){1#KVhB4G5dYe2x2E0oGPMloa
zqW}O&P2=Uc)v%GoZGG2ZAS%@O!rN`~m!VH7O$(MH@5_+Sf0N^?+rAtBpwEOOLpWR=
zVmIM>$I{Y}mhMvDCH21U!gLsGObp42=xvvoj+LlX80A-{`=gYo^Q-WiEc3TD?d&f@
z*i^c(F?d7-f1(1Q_e8*JSDMgIWdroXjScFj($cC
zfl>Ytk9JF@Gy$CK&R)t)Rl4?t8sJ|k0il{vx>^Q+d_HMEcybJjc8e+IwzTPIrw2H~
zg?(Rr_(ZDakHOHjonnKT&_F40-8ELq^`MKbmPUB0R{4K>}sp`0`MP%AL>*(bg%dOR^0|4
zY?;ak&=lM%*(t5P|BMBG@#J8wXqQuKxQ#2@M-+eQgVy!!`me3>DGcNQhnk@@#mH$f
zhqf0^NeXi5{F(tt@0jOF#`z^pgmuD60eUy9bmV7dx^Lawj~e3EM<(Wa`0IN=aRjIE
z2j&SNYH<{Pl63+obVnFsF52@?=pj_DopsYXf)K<$bLhO)s&DcisL*9B)@YZwb>z8T
zZC&N(W0coe?Y5IvZ2o-~*q}^|;)@G>dDzA2`j4R#V8g|23n;&9n|Vf=E-{WJ>z$_r
z20WUkn~m(H$70356GmJnM{<2S?*RaoSN~Jrfz->T0EA=y-euGU=v)GH`n9wO6I*(S
z(EnXn{Xb~1|8ePb>_54T*yxl0yJuZ_<0j39@MOq95crvrqSJ*J(B15Z%VS16}2
zotF_+w0={ItltLyI*f6
z2@B%{+3~NEE@qOH`%OwN{z%?^GqFTyx~#x
zb`XnwJ(cJ#KzGJX^XAkK&Q8V;qGy7j@-&G3Le+RX=bVbPlsWE6HpVRUw56?Z@T{5L
zNDPHCy71=TBx(j})4_$){_tu-&9iql&fH>e_`^ohB{*FNVf*R2e=4R-x^o4hq5iEu
zhI+Zq@;)cSJ+_Z2<~>_x4q`k;
z4Ubt2PBe`{H}D(mVFf0{4=~|$iibrhsmUm#CD!dQ|JuQ-gDWhJv25iBX1V8;P&;(9
z#Oe6BPSw`isx6pQ)36YC?4wqto7L=p{+RB1q7wuk-PQ{x1uR^<`Y&G)=!G{iQ{l@r
SVZ=|60Idgl8kK6#BL5$qPIcx0
diff --git a/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Normal.quantile.png b/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Normal.quantile.png
deleted file mode 100644
index 071c6740621ee0974c319f924c3c154dc48b3ba5..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 6512
zcmbVQc{r49+rP1Ayf3hL?4%Z>3ES6y5yM
z#%%iT&E&{j@h;!F?|3Zmk+~mPfMj317X}@jMn3X!Rw>AFbt#eKGN>y!x~J%Fcaq&)
zE|=(4S8l^jDw@a<{JugDdGVfuZ%0sBI-0xZ
z@uiP^pFk*9c6%ANL#~1Ih>Qu1r;9xoEXNVA7QJigxMM?9*7n5ecW^{6zeeI;IC|V^
z^4p&~WnpinauZp*xTWj8+1ooZ?ul0+BK4cfPCw#s$DH&g8{NKR=}c};dclW79q)*N
z*E}Smq$v&c$N}OBqX;IQg_PE~vO7~-3ahQ$*gmnP>0j;ROTDf`6vs4H5cew^`IKg9
zU!Q(g?h8ZbAE{AIWn{eb{i1)au>2T8&Oy^0S7twE>nvSlLw{TDGXFd4TG))oMygrC
zO$sIRBNK^KaVqML#aJ7zxmK|U;)b|~(MrrLes6>?>~n>PkUZ~FoaJmV>I7ynt9i}!
zPUO0h_jP?|SzQ5&dFl~r*iu-c+vlZH*X;GM2?w_^9x3dVW
zL27DxkH;?5M@AT4h?(Vi%v+Ha`;3lK3S&@Nr5GD+vkPts#c_o=HtMbYn1^$!=*z@~
z6tjL>@@oGEXK-sHk4Zi_@}q1+dzx;rcd1^?u12n&w}E46O;$EcFjBT_UX7LK_0_RM
zug08~Q^lRf$zDylt7P>y@z~d`4n5_tRzozH!Sf<+w53V2wl|sTTmuADx@%ZX!YQ9LPdQ_LA
zOsquaqu84zRRe^zYqh75kmFPbnqF{LQA<$zuC-6E6J8{aYh1`_ckUQayul7DU8*X5
zfu(uTASrM;_X`b>2ka=^1?!$L$s2QB7Ndu5-a7NrvvEGt?cDHAA-WWOC3)q?MOZqQ
zXV|98UW{)>iQMWtUE`dE?D0`aPR0=#ifZ)~Qe9ElR~<%UyKKxFa9kh*YFgtEQa5GB
z;M3!Pnh*}ZMzh?igj$C?QR|pXMoqJavfrZy`g%(1*Nd~7;yRVbJ49xzB~{Q5yVkLu
zVKtr$*?*LU2k9qZI-D}RL?8?0{to=*#sOPLRUS5LbT&6V-c-YXJ{8{Ge0$0{vnF0S
z^hrPm-2?P!i5oqxqM$Wf1~>S8oJi-SR2R}nKL4?f<8BP|N7`%jE<8aG-b4#N}P7oUH2)LLcQIA1`+oLm-iqwl5LE2;y1<|!%{Q?hZkLYH?c
zqIwCZOD>F+3>I1&Eb6oUrb{}2cx4MOocY*lS|z0^eE!zG^5_pM;_;d77gf4D8HO~6
z$O$L-APv**`&4E&Vr>z3b#R2Wo>XE>twqkSO>KNnE#DWmK?uNJq98#Gn^$jf)G{Zn
zhL#2L$te|5#AdY9<7zbs5EkUASU)|FOVPGNsZgs~yDG$@iD7D
zix-2V-&F|6DivZT>K7?(U4G)nESGz}+~~2$->>ZGo%@2%tH@KVfQrmd>~R6X{gN5H
z8ly>7!DFv~d|8S1o4x{DD|drC6SHJbEZs>7d_PE0O?K}s`qPY~zi$9x5=3JZe1ju8
zPo45+8+xt%Ua`+^G&Bk)k8M(Z-w~d|T91FRHG|0!dD1v|dPJ}8nHm;6pX!?zLlfg`
z70yw0Zdv4Z!O|KRZ6@FOEQG*y+}2(dwI6jFu*l10zEOBGdS(zZMmE7Y-KBr<)_Nk`
zb7!`|aT@t{Dolmp1ydU~LHGKo3H2y*7Dy9b*Q($ejyse}!1>EY6>KP}9e`8p;Hc{h
zJ^6Y5_^EJ*kuM&H7-R<>COF*rY2jyuZ)cVarxU8=j`)ykH;_NFEl`CQ`1x<~@yi_J
z*x~MEzsWt(^~%OFw~JORD-$Z1e%&dsWVeVNynX%|vah>;eMyx=yK-=I{oR3tYkxu5
zU4dKh9cZUyiFukQyNSj`
zIO6!qS>|OJ*+rk;=bc~3S`OEEzMw-WfYM7oy~4jv&%C0hM{TJ;bED;X?ZUhB(s5f5
ztGL68YOtPOcCwx0njcct;KC>j=drVtlt>sVBntZF`H#0X(CxOqG}Ai{%}e<`jD
zxqRV+x1%ynN;+rrmNDp-Qs-u)zBpD<$sl5&gb$BDNSLZVI*E4L3nQ-(XN?A17mu;d
ztGFz|V_)l)@3XrffEA#l{c7{wV%oZ2DpN3Kd2AxgBG=vBNY-YR?8f{yxuP4MS1W~6
zA8I1umWWIfpRh5#WKU^|Tn|)OGvcbrSt+9h-GE%9+m>JGgTl9T6ysQl`)i&@_sEs+
z%Od*U9?*6AK=Iam@1c2t%bQ(uE`#Q}c_YpGLsQV51A|Xj^?Xs0!Tz+$#@L6eZ2HN$
ztfedV*|)PAIpqqqFX9^3uVcyyU(6)(!y
zD88%YwwqXn^O0m0paOd)tJeeSQa=uj!+*=kVvd}vf9ykrToT*roBxvdBz`36`yHq6
z(w)KE0EzyGxcj%_lNBRa*fWByyaC`&(fY7d6q+T5d9MKg>xt^n!%=2BHYwr}#vtCd
zE7+0rho7P2W>>4B)@K1=SuLETTFd`E-HDG2D7G3qclwH(NjBCSPnmJ&5FHiROTM6v
zOn#@Setu%{p@n_-Gp0HQmVHto)METp>gSN);NY24r{?orGLebv1uq?+j9Aq`D9S4~
zvxm+$jc?=nRFPhWSlL6VDgqA>c}%zCKLYswfFIy^qN(_eHtK9ncRtw$00K@`R8+J|
zC$@h;dGj`XQ)NLtN|XKk{Mw!MJs=de6+QvRvGfkST|moqJo28UBi}5spYNZHWGR2`
zaO;C#SxQvmuJJ}HfZe5?8#q1;1h{^
zQO!c}MPP?($JjgWFPdL?ePCjzbx~#BV6?@2+P*wRw!1K=d-Com7hoR4U`U(fmI}sI+c5Lm#0enJ^mLhaMQR}A{yH?nryWybs-iinqyhdiL=`dci
zDs8!dIz+%meCp|BPXQ4ZZK+8Uq51j1G)IYj4q%AXo~CS{Eu%wQ#U)}?-iiUhDRA}Mn*#~D0^R%x9g64ogQ>HO0?JL-N==bFVdE4C#
z`Iu@?g*POETNL>$#k0R7w9>`+RTE;f6}&CNh_;S6d6Qgq2d9hFM!T|i@QC&C%itzP
z1}l@FH{EVG>@8kaMsU@c!xu&zTOCB8Pphdhx
zXmGewe}h_N33Zy9^uP|Ton8e6FL?=rk%}J#hfyS(3R)Vfo4p-gT(k{)(-lVY!`CJC
zUr8tXoaz4jc~SUg{=d#^HudYWwLjBQfSu?8EjIHFzZ!e;xFBFhcp9dA!0e1RFSuU9
zPF=JlINP}%^w?Qa`oTji!O$DrfQS$C(T(K$Wa&MlRq3u>4GA-TA!F4tD=`_z0H}ng
z?58qb*|HO$PU5ah*4p)@@sjBHfaojF55*^dw7OciftokPUV4>JqS|t-qJ!0T>evAR
z6M4*|A4nir^G2q{w$?eDwU+_Qkzh&8u!09lPrl1DQDi{kUgiWXUB<@W990}%VS^sO
zgM}Wdx*b3d-f2En=i>(09r3mF{i-ACZhOJ7G+?ji(5b!RlD`pvccsTJW`CQzCfHdv
zB!4kbK01mET3GXeNZy6da{!d$Wr|`Xair8=6@*cWt-1VH=58)Ln!&;WWZ}Gqc06zUBZ9jxlK5$M;Ih
zYq(PKRrvj9b3CF55n9Vj{ls&;30Z$hsVj-RLlR!~;14{C=7OGkQ`%xz7Pi*s<8Tx)
zzf<4YG4;7JW3E`1N9?w_;S)&mKD$wppqInWyCr8#vE)aWxer@9Mgqodg9
z>4;CyW3&@eFgUauf-8gE$&ML>98yyJ!?X^zLa3y|5Yyhe*}#Do$&9X>k)j!OoUg(r
z7w@Gq7&UQ+&U0lQf_^_I+d2Q7y5spA&(r9DMwIr6^DlF{lczYQ?mXrvYLCm_p{sY>
zS~jHn(IS!_2)sJF01d2MS`3q)4j=EID`fmq>VwaYw=zplWwVo+K~ma}B-QNwW%0yKVU7@a3O{
zKgBvR{Vv~xbaw;dj{9kE&RK-^o9|gM@&{?6x{U_iX3#M4e=+C|&&K27I8Y}|)$KCbQ4^w!
zF88|+GP}2{&y4hzaL=g->kL6kECSaTAKN_{GA`=x?|(YI{YN55c)R+U%&}U7J4lkS
zqdvBxF(L)iN2?NxDo8}5`*%{)kDc)Fw0IeUMQz{Bv9W%H``F*&NsYL_`RDEbfn#FM
zzK}=RlQxkE82tUCOB5p*x?GPUflFT9#-Cc+N+kwL;|A(%KFNXFC$~K>5={4!gwKA^0Aq2hYzLJbDbSM_!H~Z}
zk#k^>6Iz)U1ORh`uw*$&P<-pKFcMdX7c;RZ^UVf0n&7Y45-L6Gg5bZ-fk|tGHJwCt
zoHjk}!(VOZ8e?f22ue?zAGrTTNE36S*{VOK_Yxob^_BD|KQHkARIFLHkn!yW^K+oV
z_@UMg)Ap9X50MK}CH5!mf3vGufX00z3rruTmur>z2Hs$Ng@!XkxA)n086Xb4n$<
z+%a}ZkbhX)9Cy+-^g2S(87plVg$NTYpZ2dfdK(PRUlMJpraiKnT462n&5#z_@v*0`
zoyC`wGK)LLE;IIfzk1;{;Y%9~{?_|_SPJ6}#q?kfDv@Y#RN?IBz3a#0>dOVE_m@3<
zTf`aN3fZ!!BsC4F&HwBt;kEOdj*Nv{MJu1Jb`T%h;+!QWh0${O0;smGFY}2Q6|&&E
zhRlJ;!`9^F2tSh>xE-T}Q(d%gkh3}fG&dKIcXsig$(t+~5VytEa#I<^{+Z=3x+4E{;h<#w5K
z5a_SW?OR*#33?vkRdLiBzmV-|Ts)TW+V}oqz)6cXWEb9Jb@MAsO|P0NM;)9~gdMiI
zrPr%QhJ@RF$y>@F&2JqVF|k3P^85DrB>U2PuOkkI<$bV?t}~Rfjr6#BmvDOdU=M4S
zoQVt#YPzSBfOzkm6oM=Bww0u#y6|t`ANXC5L8wuj^GNL;`yO#CHqhS?%GRnT|I7j=1HDIO&oTZy&9|d}b!xS@rcR@QQfbss9gnkc
zPJ0bUd(Q=#y%xWc2#d5L1N@VJcD@6*sJngzMg|n!Mv?;$0wy3p9eF(!;7<|A007hw
zegI%Pg8+bQ=dl1_d>Q6qk?A|yoY)XGpPHv(NkUob%t2~C^^cb$9L>!R_uYn`46i#%
zwh>Iq*BINjOGYEh+YyyC9`QA1H9H5#d_y%(E2Eyom7i7It5&f1T9HwJgIl-OVxZ`v
z5SL7>k5^WKFU+t>+EefGS;J$GTWnEU`nJSRaVyOzr@nHWSC~z>oP@sC!;$W8$^Oc+
zJI?Gq7@XOA!9+z}s}HHZ5IAWh_pWMW=E75f(y*5*HfDeAEm^|
zg|r1(^%)(OR$-O%W0Gn^gfnVV@C8b)`McG54~o}4kE5zqRo06+op-cQGKOtzbbZFA
zr(Jr~^I^38)VfQ@`Q3dsrjC}fu|)Kdw05nkmgBOmo@%3s4pfZBIc%MwP4pZVW;Fsi;;9Wp6jTl)wV}xq_HC2SHs2U=H4Wn
z?z+@Huf23w0y{6wS^ZIJ&b%ORd%!HkRXr#lXf>-TOJNcxSmCyDM~0L7aofGcj}^35
zT0BG4O7mL7mGVs5?#ts<-WWmkqK!qe#SLYff3+lftQK2r&b`h}&-O^W&$#$>L1X|u
zt-AU{PY0@3lr&Cz&{$7&4n?0k;D))}ugo*KL7e0Z)b4FBSxnCS)UjjTs#l%g;ZgoA
zeSIeHpb2xFExaS>I%r?mF~clxMGP-SC{I7{*0bOoiIjO%x^@fSU!~4(RydmnrBTp~
zhb=hf-N35#Z*=|=vdZ3M67piS2`Lb`nIIkIkc*q2k;s}Ujc%Em3m8o_30rWDg=MRZu4B@2xT8#45HTltK)hwM
z>{AWX;!{|R>3uG&r@8HHoCY_}fxGeT2PksiN*JPVN?2cJH+D
z=
z+xQ$BFUaoxPLa;)>A7!<3)MzOLoBKi{SL8jb~pWQSw+b5Sba1>zBr|nz#KQDU~ubFSw+)~FLhIM+vQ)$ma3j`(#(p7y}uM@cY44!Vzf)m;Z+
z`<+Ww8M8hLq`>-K|SLI&9R@nT~cc&
zLyLyLKxkXJMA6i3c;Z=O*l8S#$JSt;;BLRa>G|B_k$&qQgUT_Zk7efYJx6%1$|1`9
zP$hh2&1<8l%&5-@{tk2Oec;@eFo3#_|1O@}R;06R>!(q}YgH*`)SGaKmZ<$iioG??
zxjn5{X1cg0GcGRX=q@%eUDI|&H80m>Op?Z#s=l(=BLSv+urfWb;dUWszXtY2f5*V&
z(0jM?`4`QxOiV;c8~CmTI2{gQ-$J3pC%JL5(R?8RpL6+~ZM=fla;6Ya8mVC}ghVa{
zs+5y$0}fwC)4#k=B3P!$n;VHH!!PVlak!6p=k=q`8o{&rJw^u<{Nhr4SD0%)ZD_x@
z5taW=;ehgO+#b#0BpLX<7s(El=t)5HIkLv~Ht|%B&i_OX^_LyOU8*^XFQpcbvaaD9
zFAp@YELC1=*=b#>;)#&yc-Z#8u-DmhU@Wzla3?Dql6@1i*HT(mB1Ovj`g&&R+|$kR
z@nMvMN(3d2xZZg>+Wnpv&emq538Co#(K^Ws}Vh3sXi@mIB-
z)>PR^A5#;E8R^;EF`w<0k81W!TT#;1@^bnX_@`y+R_F61uHjg>7z^0Eo85L(zLg}b
zHF+-XH5M*TVZtG{9F}wZn6;Ky*{J);F)0p{B}>-HlL@#yijuYT%=^(dzfZ#)3CU%&
z*#jsx5_xq&m4Fw#Bd4&+%Rpje`r96OO3C!BT9miUu)DlNVFA0SZ=>yEEJu+U{?;>j
zg!?ZZ^G=ury)U7eE!wF%kM`jho+OIAQm$I>cgdKtF*%hE?uR*&_U_xOehckOFI-GM
ziE^W9`Q3ygu}ukmhnw*HofzyxljMAHvutipQgBCA!lHL=uhEthe}Un^k8XBe+H8|-*h($E>xW=}c9vJ7m?kLgcy+oqq#3PEU1UKF$GB~+du8I&1J
z`B44KhFdlCU3Uc!zvBU)qYP(+5%C%3#8wBgT+}jN#j!8X-iinPEz|1c9qug=7?x{q
zb~Uf$VPy)crVqL`&owwc%c7^ihKEiEHI*V8d^+POn+~3zMLzkSQ6aGfqrTpgzyFnt
zYI#6TDemXcMod&M^zjaQD{nZ$TPf;D85$WuejeT2moco3)mXj-fuo(
zi1Zq_vw%P6&-lY^mBamzl&KhNIo)jJEvrMH1emb&As
z5#k*QS`x-?RVMj8ac;9x?Oo5%lKI=m-OGmuYqk4e>on97I=XcoRjuBaIkrL=dH1Ef
zX&&Y$m!g|fhy`i%X_+k;JKNWYtz)`J4MA}qsR4i7*SH|ypR(+~3mbn+$N!4KR%H
zi$3~RIF3f6ldGRAwKKhTXYnBa-_?;*D8ZIgBRZZ8Y&mAgROrDM84V3ITZ9
z#cShcUUzm{+*;9ozJF7ak&^%;F78lFroi3&Le*_#SOYmjJ#qkZjRH
z)*R->urDcrS=p8!SV$zb99;|Tg7jFQwuS0xJ1%y|
z%*f^$P(#DZ+6%HA_7dAqA)lF6#d!PBpG6uK2Z>`HrVM9PVmS;(LbE0tp&;}0TpVIy
z-Mm&E)$fWJGyy_}+{Djck|HaU`Cec$9_RI5=%tl(SYIK#m*@w|h=x?n4m?s$e$8_;
z89#Q_L3eH2F{RjIaq^+g^s>6ifa-wva{;uU?ObkBy=3Ot`@U~+oLG=c)@#JDxiQ)^
z_30nlqGRotat8M2@kYa5_H919Y*3~aR@;{(7At+B_{b87Ok(G}?R(GAB*jAJ;48!*
zEK|m~vn?px(-FOad9+HkX>O(Fw)T6y7#Y?j@mNN*1I*RHRg<g4Nf-eX;lWxn4v#
zwvNH_FQuVTDyXvI(OYfhr1`j@yua~ngO&)wWjStRV_HBn0y@Xdk2H4^
zd5zR$D8l$fl-$(jpp*2=y)&YsabcOj3lyj$JY!S%9)$3pCR0ohzjyFMn;RMcKaahw
z~d1w!!wAqU&Vs$Dub9{9H3YeVMl(_8KFld)lGtfDrM)o
zf0Hm$q*GxjK$Sa<6dHFKU~+*B74AOEP^2M*Ut4=iGNAV|EWk9Oo5%|d=)D4VmF>uF
z75_-joek6ov15El6lh`Lx^ljE?a1fvAj!-5W`i$-Yh41@Qq1H<-UNrI7o5oF!FlD@
zJXiPfZcO|V@(9D@05`Qlq0w5*-((
zqr0lwLm>Q&)g(W=I5~NT_-MWGDb%`zzL6zf?cLK?3B2v|n?uMWHNtQ)d0FOT}LF9_7Q(OoqQ2t^9(&02c%$H6z
z!W75=%l^thTXE$~h2~!UqPJLMGYd~=XR1yg$fKho2cc5ZM|6=XEdXGJn
z&~Q)wY`aU^9M5hB+-;`qu**st=*i$|@zTdJ*(D68zwGnlYIPzY`jygPC(C;c)w3cb
zT!r0uRU?H~@AdxJvDP`h|78Gwl$(+ldi%rqq&laAKsLYDsnJCM;feQCKq18hht3*FxLjW>ESdONB-{3`*^gcT^&$
zx+UFbEv7T{%t%z%JiRelQC^}0_Fl3vM_-6D<51@Hzq#(@iu0FQsu>51@bZSWJtj2!
zhTI7vjPQBq4CFQ^pChrVhRI1_EAn9MabT7(ZS2Y+{Jmd)`S2G$e@NrwfX~g9xU%&6
zW`pu4)~)8183Amuyp|~~m0y@{3l%t#H$?xtqwY%N_Od$qd<`ahQKX@MmqCE`1l!fP
zp=6Aw>#4Axl}tb*2m{Rp@!})oZ0H0eGQvfk>}&)m2w)HN|I7^wurk?}th{nYKm@$L
zG8?J5F+OdLKdN36#wYj144Mtg1%f1%X4)Xw)y8!(hEk230@W$2Ue}F+uB!0E4nDC8
z8e;m%<(xo2=!q4g5dI?33k((N;FC_Sglgn^AVX2ZrdMNYHMl`=1de9g40`PHyV~OTwFCS
zXZAs}%;y9U%m2SOx)E=BGk-5pU>Iy?uqb>4cmo**!`6l%
z(f5$#GHK;h4?xQn%XdBl{*}D+*xPJYEN>~I!Qdx(RW4uEg`tiwkU{0)xl{rqI&uOM
zo1pM<3rc1UV%5dF40W`B6b$|Efr=ex5dK{du(0?Q%>yMf=7zb}CeR`Ip=5)XVXmo$
zT9n)pze)XcYm7Mo5BCJoV#)%gsU$wMCUB6}6nbz+i=mFbYx*lXEt_gWWx@6BZiP2f
z9X&l(pv=Z@V>Ahfe35R#sK5m^+Lhq_dT-?Ox0uKg0%-bwa1!2=f~svXufQwP@M!!-9i?LO>nQ1N|9b>
zFo$9ig@nQJhc|p33uG)-V#gk5H}}lm^?1>d<_kcwb$oPCcy#0qm+Sq!l^9lo2)9_f
zAdzeIGKpwS*MI9`WgJ)sQ|--idnCNxEzds)^$Dr|omlHNXptp3ZlF?dmonxy|}L
z=#a9^W5{;F6(rr0+#sg|oG+gI{#mXDcSqJwY|XN29nG@&n@;==%2CM_GSj={>@oZ9
zo9O(TrnHjGXAzbu_Dd^b4X)xoUhTK5Zy0iHGeV`$KVs&ve89gXk6VspZ2B+-(-*ay
zOUbdk4C5g!UqXc`JEYdaoK^oy!bC;|%%mbki{?+NAQAn?CsmMU=|Qv0Fi!WzQxaub
zzj`zO1-?H!eU6{r4OH0M?{z2jxQb=N+R8Hk0D0(hlBpxH-W%>4T-j?YzV#Q4^$PNs
zzI|l55qbj638Eu>Km#Mmz%uwT!d9<`HL&F7uNY>t>8~teMW?`QR;cT`i~vOWnQy@?>bh*TqpNRtlIloF7VgciE=UZeyN5vABbP|&z`e)_RKfmOrF7YHK-|ADF6VV*3!IV0058)
z@VP{G0hB!57cd3~at}?UHvrId{COa6uFEsn|W_HNa)yk~AqB>K0WWU!N-+G9axvP=R$1=WNdRuPI4#_RYev_a1LVR>khSxvw
zvERhD*;H2gxf*^CJnld^mjVD*A3yj(766nO=_>$0S_umU<^c#L5Jp4{12;kU?}dUH
zp4>Lti{+)t!QUkp!>6{wt>YMLNTWmLR_>N42eoQ{{C)b(^XKU~|KtmEJW8R>{an1w
zZFUEpnkCwE_^%?!yL|#QSd303Uobs#HS>I{}$~*WoytWiDsJY=nZs%0A6Fmp30~
zy!a$~Gorbpy;l9+0xU6DZwTRTWr<%ge05dN;EW)QYdH%TpnYcN={9~l+F@=(e5>~K
zNL)s5e41>6h!NI181&WV7t*~?SQNP+a<2`13!NY$R8C)l)n>#Z@zbu-)=>`UPEfLT
zU{R@wamtit%6M|X*V!8b2xZrAiR1}_h-KW2*6@Sf#dkjbIVtK5sM!a?I9$MVQi##0
z&S8Gb)-fW&uZ})^)T`$F!3loe+9G94t>k0*A&cMxHWr2lsl^#7D>51OOM$vL+OQ>F
zv_5&UuqbB%egtk?T2jkexG)0>h!MIcuydv<;}boN2VIX!`92RR0p7cRSZO-^ndE
zE-wGUt8bK7Tj^^tSKhKCA%W8IZX*-7Y=7`=ERb(|bkyuX3KRNfJ-s>5yS15hW9vg<
zV|}irR=mU7x85mDyhr;!k}qi~H_M~y=&aLsVa+NeL{~+^qGa>rro;B?lZR!$cDe$`
zR`7sFSeRPvonbXb>2mn(K@{<;_r|IcS_V3C#sx@N;TU}5Lv?}ud#gmNl^V&a{%grj
zLoMcV+Z%PVNXGoNV4R=oz#?L&TnBgZ`pi_qa*nY}JhJcD)%57i_SxZ{kN5c0&tS>j
z)8diypxLrtnO)mc#K>{y4P7a=t~%Py)w;uGM@4|08~l;J`DELN>}ui6jdl0iUPO)L
z#P8eqjrFSIjks-#)+K9S`CG7zunygdzGZZU{g%-som_R-pthrnj*S*^D+?ax{TziE
zVXDNiUQx~;YY+8zM_8TY6|X-bVsNO>Yps!2q^T!+tnYt+w4OgVPJ6#dVgyBf@A=`;
z%*m@4j?F2uYin8yxB+YCk>LUJ0$qVK1wyjpWKvg=O-mbpYl8NQfR3v?xnqlBG0)G+
z+4N9_^Yi_ZahoIY)xZnSpH)BA*B#_|HyRaq5C6kP!t7WqxpyQsaHu(ZKeuMiHGr0j
zl|;Q0<}hk<>!3CN*SeGL?V{S;A9jb?1FpY?_D?1=ElylVnHYREjNe6Tmy77|J1GP{
zi%Nd|-tNd2b!2Q3c=Kjj$9~{foACmh^ju>ToN*%IYEn+F@jWO0bV8fsh7sG?D*x$$
zxE-6T*&r3^(&O0LvGgVe05GIh1;OS28t4B(vq?t|-Xz~0O4*}bJ{NNTXK816tk_Nd
z5Y8oRNuC)0*Ri}K)XKv-ll?C(bZR$@J-X`@9H$*m`(=`pqgpI)Zg%Cqw31m=Zo0C=
zvZ;bioI)rI7%Em(>04Sk+z;qXjx0UCHP$<|aMt-@waX)`6mL
z_6W3-Jogj7q>S9=I=`QYZ=kvf(~$d$-$=_AZg!|(fTVoubWa0g+%FTY|GAcQ$w+OS
z6V}$HcbJbqonCjsY$+yhI|X2aF042<Q&GZ~p}twIJZRj4Lg1y+M{JHiT}qAn}^7#MZ=I(*AUvh2$5hcFbng+|*es8>#w=hOE$r
z*p8RxYn0Q7pH4*86?FCQ-BR!O+xyeMq=vN$I{VJpiUakA_U6iW_N7+7BLmG&>sV=h
z=A4~uOE>SSF4$_w_R!9J|9St`=zFB4AyxYNz_Yw>sJWa%{!+N!DUDVf5pKhdGt+VF
zJUEe|9z5c2>Te!YI9EczVTh_AJbWgM~at!I{adXjbfqqN;=SuF?c
z2*wGPSIO$wr4V07)w8yxIWUVqqU&`UC$ze@uvc+4ZTk0~e&IsJCClSzt>Yq+0|#Cy
za5lFmwg-Lfit%xejs1{hpM
zt+)q+3#%$_n~`zTUc)}r1C%e5S^J{-kUfI>Ywpu860_HuDa?aC{L^bgGPD?UB-Um{
z>Y~c0w_m9^uM%2=-P!|XY!wwo>M-t;B7_@5IA@)-it-1Old6d}?ApU
zhO53$8h`90svU@D)qn237&$Z1bSIfm#3|m}$mN^VRl6F>B_QNUgD5MZ!M%{WtL4DVZr29KTL88+~~
z+4i`2e{X?9Ldg?`x!2+|Bf3*k_T^lSo^R~6q&^g?`JpD6l`RBTh&c*h%rFw^2X);qJu?rKSv~e))xPDZsuvq@d
zG|GIfr~B=(Sn4s`uCgc|&S7KQAOFdC)-RYEwBe+lH+J8q?Aw?8O!rzmxm+qsyB%a8o34A5&!SJWTaEm^w$c
zWsGSfmp4v<^LwuAob5D7CK9J__5JZ!#k?KO9BRu)M;0O`Aoyr?ZU5@ry6F5>wjuNh+t8sZH!u6R@
z03G@PDmm=h>xFA12g01BKZ#8wOedr*G8qEEr4h@hmf(jeRkUSf#DJ0tAuNv6Y23m$
z$uFg9v@|97VV|iK9*?i-3AEG&01E4j7_JqzD_^`)syOQ1P;I#3J@;vE5rTrEqTbZ3
z%v4EW(D~Uu?exndiaGwRH*EtU%M=p_(+Pa;qHp{*_yM3ubeyhIv8JkBXE1;jr6`lN
zxk3&B3T~BsC;ktd5X==G^R-VQ?6%WyU)T%
zbY0~U!&lSW8e0{Vy8w0u2xY3lO|xp0?ma%r1Pbt5v{+N|*d@!1jJbUPPC*Rwpy(p&
z{9cI!A~mqkG7k6$w>#a?T#%`Xe4tWMVG_IrW%A$~B-cTDE;7Iah+%N!$1wNs1r6UM)Q(9?$F6^Ak6pYy|S>#r?Mbvc{f8gXIuL%y$fl
zs5aLS5P6FUXcCGj3MT2S5Iq=yX0jMpZc4+*P^ZKLo~f&bZ=UAEY{%;AxDzMP8y-gT
z-0t29$Hv`fva6rT^^~mWDzIWMET{4-Z!U_PKY#m@gyN45AD@{yk7~FzFB;PI#Vhwt
z5n_Im3^5NEQeHWEY*Cg#c8Lu_$=;57oi2QE6YoNbMS^yCB#GblrTlQI64xL{&cpub
zv%NkT84uK?MvB~qq*6mDzt`pl$|rf()6P$aLu8H7(754r>eyH$Ay)ej${@uHWqnqkJunmX{CSEYSS#l+wqu7zVL6>>52hd~trcP};VDS@43*
z7LTQC7e#-H+whanB}CUKCim3O&(8Yi_{>rTqYaBkb*ENF4{KX5
zo~|7pj;=qKQmZV~+rVFVi90;3J$j~H|0}}$@rHqP3|}Zg6D1HQ*4WtSHC6h)yu3WV
z&i}b&@vOxqwS3%@7}2Oc$)q_(^CO;}+qi>d*nZ)Og7{M?sRtA!IV9a{RC&sVn_Zbo!e1_(OZb>SrdWd?W05!UUg>3SR~v+r*QGyTZih>S19S)u?1c?4Gpj2MTf&KzOl%SRwzPXS^jA2Lz%X!
zo+5Xf5c59ZJwspRhXoPCDx!pm8M>^)hq=+=@zW-hW*rT!}$O*1hA%Q#w~@(BYNL3V)o8qeN@e8JB-q>0^8Wp
zaD#`p2*E7?Wx|SPWLVk?dvHUU0DzPX!M!%5%l0MO${Otso)sc+u#kbdRAyMIWKT-Gi3nf&@o;)S
z4UX^bRS$_wyRJ-i3DQF`|J3V(ONsKSPQBlIxAm+4#Pk+ZTZrN8;Cg-;qOsxjE;yl1
zE4z??pt1S$!QslCVL?l0Y$3eEO+62KDmz{KbRf}xV|;v^Jjm+os_5OS|D<%(zR`bhZW!B>+A94*@AgB6!&9P&wPLblD_m+jmU@nEbzkUr%=4#*Q
z{IR~?i>x0D2?9v)>2-qsBoyQ}_g#puwtv9QICF(vp65waMf8D!_^&9#lm
zTN)irZC;m8ywtYgJ7kFS9%Bt-n2)vQZUUWn&q22JNlsp%1n>QgLYXPgekN)0DkxTr
zL;B99^8@_B`Kc;WR<48`Tf6*DCv~29{%ON&hOm|!+ElixSZMdMMj40zqQo$6%z0xu
z*G4oWsS9|$-H}<=Xjv#zQXCwZCxgVqIM}i*6MOg&!@_2m`7aECJp&q*GH42YMT1%D
z?cm_|*DF-8P-*556ldz##cchK+e%Z=*Pv@?fLe;6mUcp!+p9VN64Up2^?VoKYh-*=
zgc-D}PQO8S?egX4VI&@gu{1>9VDrIW)70z+l<9H|y|#b1QCQe#zMJam?>B^)d51t@
z7|DD`c}f*SRl|+HH7XilhWY}ZcdR{o$Pi}iZWS0*@k_hhrB7fBL-!Fwx`!jUjW2j%
z3v#3x0Q#Y$m|-lXGInwC=P`yemS$;)uA+h6486FCN&R_eDti&s7SQNky!dB%G`L&{
z6gYfzx6$`KCh}wNX6ChtedIZH)m|b_EZl&fXvUO1ba}s-d4i^aScb^2B$J_t3prU(
zUQsP1XEX3=ESS~VZVOHbPa}bI^f08Cm6Z?TIOc!sk+{g+pJ*J86X3xbJesH^X>)^Zm^OLwDUwNT@k)#kQ#Ua&`Ox^L3v_<1
zY0#dLyJ&Q__7+FAo{?q#YJjDgrDfW|_xz&r;i7u~GRa@B+@DSq7t1^x4JtXXDP5W$
zukeT`ssiff17Jm0SLrIt7k=pE*^k7Ja7=z?`2@0eFggY2xSS5`josfGD-Mz7(-Uca
zB-blQKI=l`vr0J16brHr8R8N6WMXL|j6agIv!Vq~4Z^UJ6)fV-T_z(XZ1z+`gzg%=
zC0iK0smS(Sgdqe%3Fdxe0t+Oj*QUENRhlyfgk8ubCd=n=dtz8o3`44L_)?|dH7JwP
z0)3SrFO=y`C!LKiU6mjkC@KU;N+{E4$L{#u#eVAqa?qS1XpRIlxA@!H7hFLEstJMP
zZE$o1$D5#IO@@SER&=#gnAFs;*@4m#zZVgGJGT0A#4zD!45=cQd1A7EZ_IE2VKzuE
zk(C&xFV85Ll$JfrnAE^Cpri@WBq~g+opfTtQC7+@G22-0>_;T^x*iI@0kI9w6oN*d;?X
zfP@MADX%(?-1NH|_%Ye`>&3cmFpk15^(gVVREmNpMN?%2csQ9(lqu3`MxALp{LRgG
zA;W-D4@?wQc^2QQnna023prq)Gy13;@?K**Wb}jLzYM}amE%%Ux4mfnK1C51&xilw
z*%RHuEnHK;2~Q+!y3F-t4S-LC}^lYn34TAK^in<)Z00KOA(cvSZOZriV4
zjytxNmtQnA788&sJBsI<_~c-SsdEA2mrH#~`H1R@+|IdE9h>{YG&b7n-Xg&vA#3aF
zHBFs`(;z!O`DKY;RXmq54=N(ume&Z%=ZtK4?2B4H(#6@Q>%9$D?XWN(=qaAH(b{dY
z5YQQIVIKwnxV}u((-3M6_nQ(q>F>9@dy}rlF}{_;f%Iy`5daEW|Iv&6wTS?wLr+Bn
z@TbuQ`O|SD0kDw2<-`9+!tgVQERAjKD>3zt(ykY)lRMuk3B^MIxXk~KZ$KvOU+(@N
zQ4PrS0q6g8D8}Vv&Bx>a~e6OZz0JPbD4*
zxV1EPMd?7mIgq+H2dS9Vz`*IT-Q!32j)QBP$Kkbxn|ySu-JaEyYiDLLsWVM5gMo?uVC9$
z*4i{Z3SKhHUoDj%y!%Nt)y5S|+;ibJO0~<^8ThWdzeC7+X8?xx!7dkl8B2_bmIKX%
zW&KB@s$Q?YJAkwy*b|f-&B2M9<$mIbAgS7uV3!yzW_gFw8=&tR1K8(&>*+Db7u&RI
rm`z8x2*`l780hqwkNzG6gv%lFn`ruMvS#of5kN~#_fDA#`q6&@bsQUH
diff --git a/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Weibull.quantile.png b/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/TruncatedDistributions/Weibull.quantile.png
deleted file mode 100644
index 7c804d74694d656471c459417abb8910bae94d6d..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 6887
zcmb_hc{tQx-~QT@P)f>LA=$GHWvib(OIgMegD}KchC;^PqPMapWUuVQ*oQ&G*efCH
z7zR^9VNCX&_p9Htzt8(z?;r16*IaX)Ip=&obI#{;-}kvayJe!sew6np008U;`r2jy
zKt~4O97mYJ9${#HANawF)VH|@032mck;NSxuP`!6dkWA4*>BCn?<=9B3RVAAOPHqVtKD)h_`wLQ&EoW1F)>9~#vrH1T<
zJD12=j)jm@S?y94&YwYGxB=k9&_PB6_}E3dNH!pXfl&s0>~S0bs9dAa0~FxT&PCDZ
z^=OOw=RL5_D^$-%*Y=lbVm@X17Hm2@oKCMS!W;z0Ad?rJPmlR?1uZ`E|G37o
zKht~BzO%HRV_YwFwxQjb_38F3nF(Ndmd`7DK*K8X&s1l@x?+h55TC(upUfan+ts|r
zt4F;ICs$>7|c}r$X2Aw)M6lLiKSRzLK3>
z9J-tvFLhwh5QoOpY*KoAQOF>sus_Bru|14qcdNSM=d4>zhWxyFaqKFw#UDofh7
z66bE4IEOH4&Rb`x>&;n8%<0b0L(umhW&2yzn{J0l78jQcohll;i%|3^KCU`{Fc~@q
zcdj};U$i?U(uheaeb)vtL<IUPwRhytqgcGvr|AXJ>jzLpeb8gw*SpobPm02X>k`*g5@n-S0zJui#PAUy>1Rs
z%0}}d7o6(y)+Z;w7^NTRooo7HrJix~WIzX+in=316bQ&&Pp{rR=!JNm@E`g?+){=F>9=U0MCx#)9(LC-ST$5nBEo2Gsgj
z@4Y0~NRc;gM!U-r6g7NwhjPMN_{=UxR@u&1C1BqwvdWbiV+Et#wTxYKUWm;ki?^>4UUSv
zuqW&u!>*UM^Tp-*!MaX{azB@7BA#}uF!R}ZH~~2@QyfyMkt$PqMfD10bAScz9@spP
zX4lM(l9SKR50oA~2Oq_c!Ru@sLW@@1COGU3%et}f0xYS<3)VN-74j8TnxZ`BpMrd6
zx&p80LEES0WXHn3$@vxL!l_lgaYgsW-WQ=!?y*WS7edzzS0JU0g@XrXr;L^CWn{Z5
zLKie{Q>_2srQfb-3YizuTG?F#QGKR0ws4ymeD%pYMOH22Q*3O;r=m_4S#M_k
z`r*8z?d4z9$rW%OSq5Fx>0T<(=i9kAK?T{`~EU=3SYd^{US_
z^&-XFs~7Tu&dHPs#LOrcd*Zi*KbCGKyG=D0Oaw~L69Sg9=KKBb!Xh<@maF0JUdg1L
zZ}m>OW&8Sh1?}mf!w|_+&{+1Ru*MXtN*AA{ZZV%t(rsR
z^`P*bt=iP7%PF5VxRDy}g~ub&pZs{0l&r~Dwnr7wsewggi>eG?h4;hjTWDF2VGnuQ
z%QRyp?3sPEMv)@A=vG2Y9K#qK6B}ou!{jWI1eGz&8_7OM9CdZ~FA-PHQx-OVQKktW
z!#{?X4vHzU1ZdcWeTbhdg-piR^gbFGPKD5Vwz6{j^z*D_*Ne9%Y+X(Bi5(g{msSGE
zn-!1oXBx9OfrwqX+++VM6#iR${12VJrdCPSvcnpr-JcG}vJEI*XM~;mQ%-EoxbZrN
zc)^D3$JEO9+(;}wZK6lM3sse6ma0-;Uzvscz!43jrZy#9Mq&$X>k^2^Vs$9?N!P->
zN=)v;TVp%0xtC)U1yW`QtR)e_qnjLC3_9acqj}9vb#JdujjlD?=$glrg^tgXncesE
z7F&}mL-cmhQk_dmAIb$xtzyDpU!~u>A{FVCb-vlS4?^?4bvdjqON>(rI<0=n^sb0)
z+mh7M_iXH^%PuwyC*B^knDT@5W{J>j)|RaY))sYE^Y#mK3-%_NX0e_{%?NgQaM$Mg
zs+}z2y(vNIzXrXkm3Xnx!u#Bq1uKW<8@GXLUUmKgxjRJ
zcO5wb^Us>-I-eG|Jk!l9(1~jqFn7;2z*z>X^cAWNk2PvpN0vot%tWTu><^t?t%da?
z<|AA*Rc~VAVn0pCw!k^P>Kp=Nj=VRNmf*Bu^j
z1UijIA#DY<3`wIg)VHsON~c0?8~E?>&)NijnlBx#;(ayhabK7z>^imoT5ED3IpA;5
zbw2c%f0FFkj5ZPj@%75?n8&n^*+7GnTWOcV=-R=--MKu8_TY#eIV8k^km@qJ4D1K~0}Vn;6VV#eLU5SxWK5E#XdR%CYWEc>uh
z{XYAKlz933kYtDK3sFsPMsYbvn+3VC6Pxnv()MveW>cTaY^E-`aoQnzSA2>IDdI+}
z^=b?~h^c|$!~k8`CA3=B{;?qAPVrXrtXe;q*KD~@UCwp4l3IAmU0Y7&IkXcPCZ~#d
z6Bwpp;YVGXd`?NH>AfIW$iB~yT(EvpFKAvau|A`BWL5lpO>cm}{Oc(dTK&n5uHE_v?v8L4Q7qq!&eq8CNt2VG
zF`im}J70uWzElLeEdQkD#-r(Y?{ncnIVRYGNDoc7Z|tE`QB6(*p0)wPd(MK*lQp_1
z2hYyr^n0a|8@Xn?9eGJj*ws-xPdDdxW>?(le4%SC_1jN$8U}Nl%SC0q4myZbtfJlG
zfYf2amKZrCGP8>51p8Ro%ky{o7L=;`HfhgUI#C^{?zcRO%l&tir{*h8HMqQq%sFw)
z?t(M5&)FNt6-hJ14}=;WQBjIDCCj65fx`XOn=O22EioY(;`=_GdOpkI7kA`Prv411
zFRe@ffe!Vr`tm>EC#Xb!#m#f4l}z3|3J{)L{eC{ChanKJ@BI1tlk8Sc$UtjrYhBle
z$G2CmW47K5hulJFa8Om`{~rWDEJ-)<;&ilLGN1S
z_JBSbRZw^mh$v2$L#kt=)D0qEP6fc;G*MsLOWy&7xyV@rW?Y?Qc5X6cu6^BN{Azdl
z^RKrs))Q&c43prCWC#EhBS9e{k+W3pOt!PZxU--lJ{meiY_T-+@a;IGuBMhz9sT~Z
ztAa;29d_o?@BPB%-{$nMC&bjFK~aKjmBu@OzamlYCHCoLQONgMWVq%2~07&8Wg|C)FRYTvigDqPXZl1&;K0r!kqk8>cn9}Tn8^4@!!7qFyHtCY?Zf*MQzyA`dEoJ~HA$AiY*jPbus!WE0rzltx5vr7J<|2_*aE3CKUs+%D
z?Nc@YXOr@!3ij@>WsuVUmzMa_8~m#Yj5fGW-XH2{+7nUd;Q+xH_q{x6os~>Tk<;xs
zvvqx0#I$x!c{2RT{IF=kv2)PbaEPtOai#Qb6HDER!_80Q^yp^6
z&Ny3P;^H`8=7LA&v`sb~{q<|}!LRou`r2C-L2A%kw3<#@Y?s8oO{Pd%EVT4s>o@Gn
zXGfxjg1(KuGC$!QEhs3+F#)8wR-MJpMEn&RJd6ET?qS_V@=vPi2#>{AZshhCmX+z7
z{gyIfKA|sP>h8%(%Tk%MX%hENfCucUjK9~9qQaHwaCu9T;3*fMO*
zn9J4_cwh^f3rw42hpZIJkMF}fCzK9rn7TKOqW3@
z`!G%_>&?OgU<$?ORLzn}Y@0gZ*_$kuTnW5>o=@+v{mto*bt$F=U9im&Fr3lwF#dP$
z1)q1})B^hg>R-p>-$lR<$8w#hEI6DWmLch)+~~Hh`v)YJz!aexSd+ED?GUHV7#F}8
zp?WGjy8Qch(-vDRwVnN*p!QikP99*f&F1Q>z~L9;QQ!nVu&&CN73hNP!3rQBpAFI@
zxOOPn0XU~6!*}xz^V@ssUExn&wz3h3F<_$GB~)!VW|pi%z;Z`6XUq!FrSmys#*!6T
zRabU6yjfTxq=tR&zx3nfwI6vvd3>KosP9V0)Km_~Gn3iK2Ga;R7Va>PDv}W=XS!^Z
zp*H3a?#cHsK>?SPJ@Ax?c_jgcr!%LuJ^_^YuFr;Zc>5cK3E@RE<_LajebI)?R&C=2
z=NYZmx{_m0K~SP-bIJP%(@b6l8A!f7LS*ZVmk0PieEfy%zu{+dVj0}WYs^h`DJxT4
zvYQN`iQa>1p^)po&U
zk0sYZ3kAnoiYk??H9Ao;!k}zShr4Q{8HKtfcu`s{Kw;oht4M@8NQuZkzxld+=}i$f
zmczY~iCRI5T7Nwr$wrZ~R6vHoUpcl*Pw~n`*imsJ^~;x^CCa>F(WA5+&XgCUIr?RC
zD?cVMmDifHAiizX2sYfJw16mOmihjXK^%8rG=b^d&o=z9`XhfxIwq8b6B%4NsmQ%4
z-|^v$u;z${`){`-R*L=Y=XrLkwHkimPvv*j0InA$hLeppI6*3JnEf
zk(FZdzE+o!)t-@j#!528wFQIaEU0XplJNpTcMh^Gq107Sa)Q8NV6zFPhl61L6N%=d
z8QL`jb}`=_Epi;~O0_U8yn~pKtr2(oc*u%&oqNx!NYS_NA$zfc>*A>++qIb=!otOd
zQO~49dpoaX6|Pmf@R_Y=S@5o{aT`2u9281g{f;s2=lukNCZ@&2X1d2`gnnc3hpAmu
zWMpxQuYMhRf?}TUIG8-hZw(bShzwaN;u*8uJw~q0$(ko(+;*D0FP#fRJkjZKusHIi(COq1@Sm@Mbkg2Wv*GRPG;
zNtVE?JPH>lv1k~GiJ@0HqHbr0$2Uz!A&P;X2txbNh@^E)
zLcd?qEhZ#0ql^qk^HIv_6F8OhNkr;${P=4Bx-ARQufTqmi#ej$
zsl1P^HIM83>{0kT*rl30$QBvi1m>p`9ThEaew(
z3pa3Fi{e_ouk({p3UG8_^nRGx+WJ@$aJ;Fu>2zoME!RBfE9-*^O8{8EU#m{W5FJ^e
z0O8pJB~tFyQ!
zp>dmYE_49TBAPx>^e(FnK;W*6B`8(gaejCjKt7RyAg73Kq9>|B@feU0*}zr9C=F1U
z?d&PMrG212=!J&{MZUEHS2HFtDF1>-C&=lBA=?z)KhtWL0RV}RXZAkV1hEvWuDqi+
zl~&fR)-7-R96mx1Aag32ycLIVcEl>NkHMCBwPD4pj%kc-QUFEJnysOMf$h%UC#}zPe`vXg+&F#)N{uY
zL;Fgv9R1GcP$XUB=6&VJKd3@%?zbwVN6>~bsX54?47&>^2@6_EykZKfR9`7wn9`_l
zN;|CL81+x(==XjxGNAkBxyixRMk+0M#&Z8(SOG>m?vlz}EMJ{U2grhtBGtqv~RL``VQS2F!8Lhf$2=!V=_On(^tf49&k@$;n=OF{kNJrooldSFi;a+
ziJyktQ5scUe(zC#b%{Z%rG1PblXbf_t0s#k5N}IX^ydK+$G9EYN%z?EwAOv0_lQh#
zu)}t_{S(q6Y-&Q&7R1N;G%9wAhnT3YFlV*?@cY+r+q1
z+%2Njpz9DCqwB>TZTeQdzYs?0D1ylgmUR=8-)Gz47%R<_r~I#4UeT~P7#-XZdlp>H
z;3s)NSoURZg#1`$co;A+;&OA#x|1II3_dAuVa2k=
z*N=n0b4j-xmOQmqlxuom*kztVS%JY(ik+$=wIyti@{?RdNi&q$l$xS^0nbckTk2in
zb#u*dhkePw7KPIxqLut*Yx64vkT=
gBGX^((OpgV9n?-(JUkHm7ZPBgW1?O9hvUQl2J~$dVgLXD
From af14eb3c3409dd0f3cf5944c4febc91d97f83b5f Mon Sep 17 00:00:00 2001
From: Martin Otter
Date: Fri, 17 Jul 2015 09:13:44 +0200
Subject: [PATCH 09/46] Moved images from TruncatedDistributions to
Distributions under Resources/Images/Math
---
.../Distributions/TruncatedNormal.cumulative.png | Bin 0 -> 6707 bytes
.../Distributions/TruncatedNormal.density.png | Bin 0 -> 7465 bytes
.../Distributions/TruncatedNormal.quantile.png | Bin 0 -> 6512 bytes
.../TruncatedWeibull.cumulative.png | Bin 0 -> 6364 bytes
.../Distributions/TruncatedWeibull.density.png | Bin 0 -> 6463 bytes
.../Distributions/TruncatedWeibull.quantile.png | Bin 0 -> 6887 bytes
6 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedNormal.cumulative.png
create mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedNormal.density.png
create mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedNormal.quantile.png
create mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedWeibull.cumulative.png
create mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedWeibull.density.png
create mode 100644 Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedWeibull.quantile.png
diff --git a/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedNormal.cumulative.png b/Modelica_Noise 1.0 Beta.1/Resources/Images/Math/Distributions/TruncatedNormal.cumulative.png
new file mode 100644
index 0000000000000000000000000000000000000000..437572b46f70b544dc5f6bd132fe38b9c77e5be3
GIT binary patch
literal 6707
zcmcI}cU)6lx8?ywih$CT67*FNq)8V+11cS)mrz0zq$vlKkIo`UKkr{v$62A006+I
ztD|8G0CafpIn8tmtcm-3C>8u+M(9}k0Ra1_wVn15;kbSHLwwL=m$&Dg{Ahrq8;rB303K|0IV7$8td|9$esJ^J6poaEh(mMph!`m{6Pwi&!6PNlc
zS#dk*>qKgiXA?GC#d+3W|JyAp2LByXA07HJersZ5M}IcJnL2zD)_S}u*w3;C%F3tx
ztf+~xKX%CLT0OPfMWxte&gs>ay6cl}c@LypcA6pR9k=p@;mws6iikmjD`zl!;R0q!
zAZ=o7ZE)(NgawXZQ=T8-@siv0#TxZ}@zN0G3z{q$DjizXKRDr;VE}Etr?7<|tSGCI
zG{qtHXf7N|n6LU1eMsf(>du09Qy=|ZJ@B=G8{eO7H_rzdRQf)o6|T1^?-=YzL*fvv
zuBm0D2@LCbwLh6&7c<;Aw{DH5mJV$z9U?j02wPLylM68mJHzF>1?j6Xszqx;ft5&xwFUhjdcz485A_M^$vLX^
z=e9!+dNzY6NCt@Qnpv6wwdjmb)Bfn9MqP|Wqnpo%zCe_9ZoN?+h_1YWfmh&
zq@07!gHK!+_GY<4zHc1ei*A`1D{m&DySiO%UFVd1ypNvw!=-|85dR*b;d`1zE&KYd
zL<}-quocT&H}uv#bW9(*CP}@80jFlEzico*7-wJ0kM>k8x$aRq{&Jt1Ai7dIWvVa4
zc6pFD$yJUgA6@&i+dHXAS+JGLU&bp`ibmR%X&xSsN34YKeY}-0_+k62*XF%xdvV*d
zeYNigjjRGhU2_B|y3+Xw4xK|5Hi)+9cQ0_hw%DU_^4I
z{MB|8UUaEn5zQ{u0=d-`RXcxaF!AW|pZoYbqF;{2sS=}#1Pq@a8;vkrAu+{-PucoW
zUqsq{cekzBW3Bys(!|)`b0#C?EY)ODeC_trsRuc?e-*A4O1Jd+zmz10(ss&kJ520t
zDsn}$bcJVHrrAc?+Q2k8(6i65{A@69=Ro1vs=%QA2)6kO!$Hp|$L7MdCwU>?)r}T)q^)Nv
zYw0PuEt&V4%M|uluFv$Rrq@Cvu>5EVC3GujQ5KpozcX)BUn?8Skxiuf34|)lHn7_c
zdVX3DYoboX(@-`oF3C=9EUJoGliM#9`@Jyb-y9@z9=cplOZmK042Qv4I~7M<%1E@D
z;?jR$OFqy_a<7O_kbcK4bMk_v_I~08Pp;wp*AIe1Co2;ywX212&7t+k=2tn0KLyqS
z$(0*<7^0Kyp(j?_=i=b52u?~n`?n%Q^Csyd)f_|pfeEr-dpd*H|2rk8epWwcZoqim
z!l;XEfO`xTt4B4Y32x*5*x4Cyf#63CANv>RyXF$0N|=ZN&5f=)C0k4#sG{vSsrhgG
zryCr08hjGJ?@&2_JO1c{CK&&pFgQCBq^`OSue#+r+p
z4*W8g9eJLsC3RftH!m$aoU&>CT+s0p&NS{f&4~Fo
zmx(7A#Fnjb#3bybXN_1b=4H%bO%5MT)8MVI>K6)DVR>Kuu2Mpz8a{yNhkZx?55~2*
zlU5&$(%D*CQ)!J)tD7z=GO`c|6l`Xa!vX3~9g8k|V5N>HdvIM0PhAmoca7(k>-=an
z`l^Olry^@yAY>H(Xns&f1zBlsksE?Ka|LCvR%U7Hy81+cJzaZj?PcBO{VjOLz&*@b
z{_honJmtpY=Dq~}>72kTb>#YVO39~9*^MmcTfd%D2E?7zW*V(TM-!KB2oM8`SBa*V
zB`Y4z)U$$ap_9o<;nOHmTULDXtNHzq9tZlo8whw__Abd!wn?{2>O(HM-e}|878q1|
zXVI5vUvK|tY`1?xJEuHhs#TEuok$;NMuAJ~&h6Z*89TJWR-;F|y6b$*3(NLq$+)u{
zqZS<_&bE6O4o9mDz_1|HHF?p8nekEJ)S4AD&BX8QuI-fIpkKhV#(Hu=!McCKeA=KN
zq0XcPVQxkZteZ~?WD~4GH!?*&v^UhoNc(v532ogntHhF-4cN34{Ux-D#x1;RFDxgt
z-6E{UE1Is+m>Lz=S5f%^Tp78$#>?dinMO$KGfJU4(lrXN|7HfE_WgMtuYGdZ`f7t>
zMFmn!%0pqJPuG*MQUg*L!mM}Th<6|`H5TO4T+y*VrGSpE+}*!NNY-**e-h@0fsI|p
z#4J00SNv5$wXnJpT+qGK+~YlX`#{U(ts*1nhGh_ip_B)9zN`0mXZZfo49Qv3i*UZi
z4-%(a`ea!jbUTmAq2h@wMkv1Xy12|{52Aem46H$-omZZUI*qWe}Uo2Z%rgxS89hflPrimj+=d#jMkmArg&?*Z+@
zyRaSIP^_x%vd~kOV)?02A`$|vU*iv9FikmgpC0hmPDI#+ppt)xsoFFI?oCv#DhgZC
z0S#BQ8msZ0K)HQ%)`&Hd^z)3LMx%Ne-HH*0N`N-Zy_^m_&ki(gCe{P
zwl~u}QdZ=5sHT2o(c*Ff@E)Rr;)_l>$sbbhlpq`nuK~cda{=!3K)YNg4*(1@9dCya
zoDQgpM=<=iSIRr_M!Pwb$leTnJ4z&8JJHCDC6}9)a@(DfYiwzgZa(Q!`)1TXG!#?7
zbb!xTdsUEqKVJ5D>F-}##dSYJni?B5*WkX>LOe)fwzJ&!qn6svvblsOv`^bDdSa}F
zsLIYN86Yb~R_%<(u3>8kylTZ$aPRqb%{gaPho9NYkR(Z#)h7D(;TKN_uL
z2A%`kgsJmP>L;8wy;}3F%04f!#a|=k(`UCvJ9b
z>mj(9f#+NS`HXQN5?XvagRxaLtlUXC62PMmxAq5($?KQkbhm3%_if)NwYFC1OP?
z6)0621+|M7c|yz}hLKKA
z0G|B3+BO>H%hbu!?tk;w{VR8QdjEpc!Hb2|Q*U?6f)mEOq1N&tDHx8js&E7YLXcgj
zk4DRtrWZAL0%!eoa|tq7SR89MNHu|srpjvd@HW}+3*Tw`4NcI^WC9+2Iec_)q`%2T
z)e!V;IH@$>6S-FjJ(JkOha(=@A+ePEoKNm^ILZI)Jurjj5Kw+z)$XA8GO@9=m
zC2p&zibUsX8=yhT&Bq@qhVXtW?Y;@mAXw}=UDXcXV-un(PUbc3H%uRzc0KQY4=1XY
zhze2)@^f5brXB}`wgn#sU%N6Sgrt!7f=Sr!)KV{D(sc17ig5o0^f3vRX7C&^$-{Wq
z;T+zkoOCe5&9-5K8nW@{GtL-AEX&z-MXKvK$8T(G+&_XvcHh4P6)O?7njbAISSJ;QQ06PRY#plerCibstCO?n=+}u7vhN$pQ8P3
zmYsqI*z4RLDIu#liRLCE%II_6o-$>nwz6`mXwUrcv;z|(w6&e`9K_vxt*mD6s-eD6
zg7PZMUl>+VgQmUn57Nk45B>6FAdikrBC7Z@geOOYftMCN#s(QDuR_49ZhS!*S$;bM
zRI~$^7F}uE=Dsh$)9=<>O&mAtF1!q<;}*RHU9J2!4z`G`7PVrwfP>i39yn&(%?5f*
z*6`lB=xs~ib+8kWBP9L9mmA2z=Ao?IaMmk92uanuTz@Q&zLRS*^%gW
zDfwt8$FC=uU|-LT*)kZ$IyrrvI$P1+Kjz2a&D_=AZv7c7X#S|rKPiE**@lPPR*|Zs
z-)W%fi?v628Xq6+6V;MeD(Q(Djr90MpzIJKxfc1xg8
z9W*0Dz)QY}OAo8L47RV~sE8Cdw%Lu2g2H-u`J8_sS5rKDtK=!F4D%(?
zBkyp_xGuf9l0W=y-G7X7{!&omp1gtQna9Gq|4`=n{%40DqSpfs%4Wnl8Vy{ti{Tus
za7fE}1qKxK%q;TaP18^+p+~q)SMuEH@})
zcts3S5yJSg*RX`&caamZxS8$e#m*fav99KMcB7|kg70ClhEu!L^Yu#3iuUgB>;|{#
z-sfWp9pGhvfuU*SQE|k;uEkf4_oI)qhjoULGlPxsbpHQHYkM;Bk<-!~-Mc3V>
zWw74_6YQ`2Pk!ZNp`2yFrz)8${DRT=uU!kk7W|;;>AeXSnZe?zRto@(SK(4YekqO&
zRg8-)6`ySx98WLCzD-}96zgF5i?NeONn(qlb5bHKiwQPYFcjGD2BU+tgEyU^d~XN^
zBW~?B4Ysp2x3$p@163V_4I8jgi{Dsw^a)gpQuA1leW*~WRK3{GcaiAXZeHgn0RibU
zlwGNFr%AfLFDReR(23p>9k+$LNDWS@V#(=6IW=``$DyQ4Rx-XkjrNhWz)a_;*2x1C
zgIPZA;5;T%@ND>biAs(NK=Lx&m*+827+i*^M&q~lQu2=j!`0Eo!}}+Jz9h0=w`Oce
z11T8WN3gwOMVEDUF*dH|AZjT?J=Mt(a053+k6iK!ewXJq9TV(zTB;=6X}LA#@Byz`yE<<$OQ>T#T`FdAtH|E+)fwdEjh;4Ya
z{KuB3X~Exv#ls{t8W-N&jZla+WEYCacRaTNu0$@2h5`NGlZg`ye#*SD-Tj&uf
zH*}z?Z~%Y(n9Q@MqpZFJ8hgo2y8R{gXA)sL5#iUa0BV6INLMGQ$u1semI~5MN{WR0
zQy!{rbF)w0%Q^*w&A$5AsNdwq4*=ebN*j#-?G*msY6TjMZ~jQ!na3A2
zo-T^tx5N?I=-QipVN+ZkT(hC@e9>p$4PV2`{0-Wk`K4R1RC{r4<7AG7W-}$C7e!;Y
z6t}Hj0=!GdN^kD_J|CCjb-T%3VKmUDHy>%8L^XyN=LVLaEsJg9NFvT5S_
z9ft%k8FJ}nBlm>rbKwF~nm)yagH%eEv987PVB;Q;;URGD*EBfP6;fi!rN0p#q*!yv*w6#
ZCg6)EmqWQO_-_oLt7)i#zU%nxe*jSK{p;M1Tl4g)%KD`2Ffjvm)oTJDKh<@Gr48C2^3rj^CqV
ze8dy6E<<5orK>J^mn!fS5&ex!m4OlfSlR6uo+BC-W8$R&+*hSE0|2Pi`bYr=3~J1P
z@JI%DX=R+Sz0S($SSKRzuZ#Pz$@}fMye%%BqVt5~t5m_Ydb|9SZ#*#@;1Qu`xs2I$
z;9MDZe*x+7hd4=hIq31P+i31iF5UzXluMX0a;OVBQMv|#pBZCwDnE=@a)f;fJa1Oa
zWLyn%DQ^GFGg8e-Sk`G%X|A-r@ITV86F&}t4JjsshJ`CJz?(SqOvMpZLG*V8%{OCi
zzE?3A@LTQ4PXVU%u-1RwAK@-V28|9F>DQX+*FVq5s7tI1>^_My`FfABxqb((^OYsW
z$tDD^S7FV#zD_>@YWB8x*wd61d=^$T`D}k?@~713DXWaah{{KI{OA(qyE}pZD5~m9
zN_%3Xc!e4ZZv63cf--^2WMAvxht8{6fjAT(RYi@NrNqP&)P5+VFoyOELG%pu-Cd(%p`u4$ly&?2y1w>f7#ry*t1K?HEAg=vr<}8l5-ytR4!ybmTzVsIwU4;ZWyC3v=+h=i!Z8%By%gR^XwU?v96!#
z^7D?W-!<=YXWQ)M!v>YLrYXWniCz?(xBJjD=byrN<$pJMOwLL-O7{T^MHEud
zZcOq@?iAN-2bUD?AZ<^lWawvr`}@r5eg!A%7spW_AAAm?cpQ`3z54Sq4&MR`{eAB)
zkhu36cuU(N+ujHDj8z33u=*NKTONqq0)<{N(mTAE1-3Qxw#Zwxm438lmFyiB7pl0p
zwHGu5`id_)l)J7x3Uyl|C=}~=P^DCz;aDHED-JR57jH9`76+e^$&Q2(0kR-i#rY1A
z3pEPy#K{HAaf&;D9xAySc{P;Oq5Wj%KJ`?lNi0_2_G5;p4u^BuYLh{t-=Sy0hWnDU
zw-0db_uGyv%G?ElxGwh#)xD|C9Z;2z5ja(E{1OTo_E!zDP
zx5U}#RB}K8PqYXCK+fwx0uZG94-o(7(gbNQ$HX*=85ugn3K1xD!w~ktILqa&5vR;9
zja@U`ZmQ$QIm?S2OaW;_$Mz0rDGPx}Y>wX915Gk%QO>C8uK2HQK_f`3ssh(L>C?uM
zzO%@@<3r^!jmpgpzvJlDHF2pb930Vn<;gG#UAfagK&j$=4xJ-6ij%G
z0d7cSn>WIZ^`}lVY&!Q&&KtSU9`1ohK(47rNAotI`QV8*zVFRb_CA%4PI3!jVtYRC
z@^@y%j%y|TrC95vjS-dp+WVJbRi1+i+8~>#$yP2RBHeMYx?sAzpsb;wvU-aBj-yxQ
zTC-=H^b_7z&06?X`iaM-ilJCfx0$ghsJn1O*(4@k^!L9qu
zSyJn`5J;+p>_Y7r7X_P4P!QWmR+H2bo4s!9uvh+jqYB~S-ECg*U?A70ul;u~_C$6T
zrCB?;y40_gnV25b*Wx?1x}Gy=2;0{mG2r8KkRE@hhyp#4OoBu@u0wjSb{siS`TmmU`#OzV2(wBiwnUP&n#v^99P|CLG6X->bUQns}=){P-&
z-AhqFp?d4lnY2ZDxtvYt6$#OGT_pIgTHlr|ifm7$?eyCI`|Kvk`WMz;J=aIqVM3`&
z#{0TSpYzWiW6(|Okk@txZ~gTp^qzkUnt42v+@3p8i-=j3MJE%6Yg1}8R;nw__DTrv
zM|H;Bis@A(@e=v(qo$aQy|AgUoEf#eL%hT5I?q}nJ1kxvTRKTladG#5h^ppP=~ea}
zJ#{TS4jFz-U7r8_Y$}fRfic`T{V?>y=_Fxx`&rkruNI!&xV-!n2UVy$^JA{@Aqa+W
zF;_p=2m49!bxrM6-M0CGHLJ2OanszfU6Di4ftM~QS9&U=-UL>Gm!QpZ((|mBse9;-
z@*4Kei1$*TWXe$Q+wI!iT0J%9w0Fp32Hgv2D}XIFy|*6fn+O6Wb}gb;#&Nm3Kzl#s
zj;jG{A#EY${x=Tp?!lFXKj913A*?v7AQL_HMB{}YpROvMZlKUto~yKJCV^08C45OA
zt>j$s>{boq$iss+6vsF!_$p=#rh=~faz3f}iLT}}SQnkvV}uucd2C(flMu``+vS-b
zA<*WoF1-5j&Yw$ff=A*%JMX;jNy-CVraPOi5EhH0iVUXEugQ1}v|-J23n*Cy;P_SHO-_Gdi?cx0tvu$P|~5kP43s7i{cnn1xc*}?pFW+q@-zy
zc(eZ{`D0m%00wk5m}tVQdqc_EUr72cXNVX$_M8WkeQE4PhY|3$Nl#)@$;%e5ld$HBN6@T9rjqw>TiUXS3Cq9MnI?tuIYdYbX;LwTH0k6C6+J}HSb6O)dJBLG(KG8$kdUOpGIB{n
z;uzxkUc;D%zc8I#PxQ0Ucu5?^&do}02tbWlHbcAIdOSMQot8jnDG`$pVbs(xVtc}x
zs?kT<-P#aNceM`C)qUT#Qp&PO_KekZxII0$NwTMpl`kM&>641fC#jz)Zfpj&(ft9y
z`lcsucoou6@5=YcsXw=`ahiUT!_Xg2WUnHX3%or%JUez#@#3h9rsg&!ANBC@8X7ZV
z`Fdb@oXo#&oifz?ChkR9)tB){N$XB|?qp?Ak44#;L@N`m`hsYN*aE!ywUT$)?uvfS
ze{~uqK#a`8@;qn8i1_IXW#2aQ+}4{V*clZv(aQUw0?MbCl#;lPr2UG&AXKsw=_i8P
zhGBmN7AUo5z;xF=^kvD|8kQ}0n%mm6o@4XBxtf+A9L)sP&mO*$C^>oJy}KizH8ZOL
zy<*P-uW!jZC<(4#?IWgGAb#pt>pUgRsrDV{155iO(ZDQ!nIq3s@8EvcqU`Kq&aS|U
zDe!Eq`pm2^7OPPS@%1Uh7Kb?N;@;x%XQqVngS#$CS|0YJvFR#j&d||#g#EO$H+Dxr
z^^Y}Y8O!Y-pCs5fyE0e8T<(E4hU0X{a)l^K$yIr((7;*(Q*~#z{NhcrE_SSjzGbos
zHVunA@up@Hd;8wrQgC2#sUc=L;9ZuX{@8)6fkpbgH1O|GZzRxLrZJMaDMI6i4>r!1
zRV_{es44>!X&l0I8kB$xw9EP+*7HQuj|#}cz8I1c6UeIH7(_dbx#>lnK!p>Pxg~4m
z3E6geL7ki*vL)rj!27V-l0|J~=_>=gQ<<7Nyv&kE$a=0Pf54rDOjL|ah7#b$bVtMT
znOY*uHfR|>PQn)-P{m!PyqELK(Mh+&?C;v7iC|aaidsqRdO*z%HA@1dk
z5sPGI2~Q<=TS<*E=3;BefQngzG#5dTCC1cSy&9hnAxZssX1Hx!FkNnJg8EGwe%@y(
zZ@|XcXHV}z*nsf+S$syn%)6w7rpn$7h!;kdIz%*a#N48q-t#U8QJDj2d1*9O8LAg|
z)+nd;j&`N@Ip
z$<*faw6Cvsyy`xZzw=D)BCDfl57KM=-rxxk-lTWgM48O3Cb_+ukxBG-O@1WzQ|G20
zL_R4>|K(Dpk|3`d^VDh|HSlqF+v7Ue`F=n
z1-DtR&m|U(h*r-Z$M_Zu~`)#
z1?fWl1ue2e>zpmpXB&Q&FAO>7_D`zht!I=e1s)@Ic9QTL>I@sVq`w+A9BT{NWV;|1
zw__4=6{MW_LQc}p>64u3=HzNzZ&m87ytea{Fk0@_xc}t}>y3wgoWY52WVi(Ek0dl8CrX;fM3bd`ma*mXo&%w|NHKBu>vmYyN
z;u^KDYpv)A^|f#-f@Dyd0U4P@{HMzwl@vZ83Kl>Fm-Dq+#AlDowc&+R#EiepBZ>BIa$*rKn?0Fpqh|F)HISWC3lhXVhUDIM7%Zn3e81Qx~^3}f(ML{
zYTj@#qlX?8r0M|03%;vx!44(TH~Cx7G9m1|E?(5pBK_`&aB{b+b+Y7Y%ozbt
zi==FsqMYea1AaB;RY$`-Ha?gMxa=v%H=KrDnHdN1<>bsLL?9JNkZ4@N0|`pA*C~#j
z-sz0{Y7Y_$8Q_8}LQiwPTTc}{e3#3wy8s@M%pZTd5*IE`CL$DG&@CaN?ti24t|^-4`ty(>h03L?Tl9Go;6x^}
zh{#T(uz4*i`}^m>%Ngn;OAP+J7;!02<*oU&l^>WIxv4RNa@=^X5NkshVH|I7ba0{(
z{!QP{Kn^f#JbpXOU24p}IhrkG{f**wNu0z(8JX2)
zBr%_UP*UJPe&8{f74F)zJsWOy3jsD@pXZsDVPC_-ujU%=#4W=
zqZEhCMEPIu%=MFgK@_elrh%oM+4L_C?~RwsuVI`OVI%^|s*@x%z&PZ01F{|D-_g{d
zX&oC8dj1#BGcR(<#^pOMGb2^kOoP?DL`a!S}!%I2s?4sH4y`N|CLuE5kr-6#v}W%
z10mwZ-sEudN;*}VxYP$+BBXDqnWtVBkn<)i-_f9Tm<@CkjKmgRh0AiNf9tfSoW-d3
zE!_cDcUrT`x9dfVVEuidt#_Z1oPQhnb;RqC#*U>6S5g+A`f?$rc%MS(X{WXC##_XY
zV^Mnd=(Hgq*4FoApLp0?2{I9gNF)|6VVM{ONu%OX87)}l^D`@T@L~upytI;l7