2
2
import random
3
3
from typing import AsyncIterator
4
4
5
+ from cortext .reward import model
5
6
from validators .services .bittensor import bt_validator as bt
6
7
from . import constants
7
8
import cortext .reward
@@ -99,9 +100,11 @@ async def start_query(self, available_uids):
99
100
syn = StreamPrompting (messages = messages , model = self .model , seed = self .seed , max_tokens = self .max_tokens ,
100
101
temperature = self .temperature , provider = self .provider , top_p = self .top_p ,
101
102
top_k = self .top_k )
103
+
104
+ image = image if image else ''
102
105
bt .logging .info (
103
106
f"Sending { syn .model } { self .query_type } request to uid: { uid } , "
104
- f"timeout { self .timeout } : { syn .messages [0 ]['content' ]} "
107
+ f"timeout { self .timeout } : { syn .messages [0 ]['content' ]} { image } "
105
108
)
106
109
task = self .query_miner (self .metagraph , uid , syn )
107
110
query_tasks .append (task )
@@ -119,35 +122,10 @@ def select_random_provider_and_model(self):
119
122
self .provider = random .choice (providers )
120
123
self .num_uids_to_pick = constants .DEFAULT_NUM_UID_PICK
121
124
122
- if self .provider == "AnthropicBedrock" :
123
- self .model = "anthropic.claude-v2:1"
124
-
125
- elif self .provider == "OpenAI" :
126
- models = ["gpt-4o" , "gpt-4-1106-preview" , "gpt-3.5-turbo" , "gpt-3.5-turbo-16k" , "gpt-3.5-turbo-0125" ]
127
- self .model = random .choice (models )
128
-
129
- elif self .provider == "Gemini" :
130
- models = ["gemini-pro" , "gemini-1.5-flash" , "gemini-1.5-pro" ]
131
- self .model = random .choice (models )
132
-
133
- elif self .provider == "Anthropic" :
134
- models = ["claude-3-5-sonnet-20240620" , "claude-3-opus-20240229" , "claude-3-sonnet-20240229" ,
135
- "claude-3-haiku-20240307" ]
136
- self .model = random .choice (models )
137
-
138
- elif self .provider == "Groq" :
139
- models = ["gemma-7b-it" , "llama3-70b-8192" , "llama3-8b-8192" , "mixtral-8x7b-32768" ]
140
- self .model = random .choice (models )
141
-
142
- elif self .provider == "Bedrock" :
143
- models = [
144
- "anthropic.claude-3-sonnet-20240229-v1:0" , "cohere.command-r-v1:0" ,
145
- "meta.llama2-70b-chat-v1" , "amazon.titan-text-express-v1" ,
146
- "mistral.mistral-7b-instruct-v0:2" , "ai21.j2-mid-v1" , "anthropic.claude-3-5-sonnet-20240620-v1:0"
147
- "anthropic.claude-3-opus-20240229-v1:0" ,
148
- "anthropic.claude-3-haiku-20240307-v1:0"
149
- ]
150
- self .model = random .choice (models )
125
+ model_to_weights = constants .TEXT_VALI_MODELS_WEIGHTS [self .provider ]
126
+ self .model = random .choices (list (model_to_weights .keys ()),
127
+ weights = list (model_to_weights .values ()), k = 1 )[0 ]
128
+
151
129
return self .num_uids_to_pick
152
130
153
131
def should_i_score (self ):
0 commit comments