-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathEECS151.v
546 lines (461 loc) · 13.3 KB
/
EECS151.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/* Standard include file for EECS151.
The "no flip-flop inference" policy. Instead of using flip-flop and
register inference, all EECS151/251A Verilog specifications will use
explicit instantiation of register modules (defined below). This
policy will apply to lecture, discussion, lab, project, and problem
sets. This way of specification matches our RTL model of circuit,
i.e., all specifications are nothing but a set of interconnected
combinational logic blocks and state elements. The goal is to
simplify the use of Verilog and avoid mistakes that arise from
specifying sequential logic. Also, we can eliminate the explicit use
of the non-blocking assignment "<=", and the associated confusion
about blocking versus non-blocking.
Here is a draft set of standard registers for EECS151. All are
positive edge triggered. R and CE represent synchronous reset and
clock enable, respectively. Both are active high.
REGISTER
REGISTER_CE
REGISTER_R
REGISTER_R_CE
*/
`ifndef EECS151_V
`define EECS151_V
`timescale 1ns/1ns
// Register of D-Type Flip-flops
module REGISTER(q, d, clk);
parameter N = 1;
output reg [N-1:0] q;
input [N-1:0] d;
input clk;
initial q = {N{1'b0}};
always @(posedge clk)
q <= d;
endmodule // REGISTER
// Register with clock enable
module REGISTER_CE(q, d, ce, clk);
parameter N = 1;
output reg [N-1:0] q;
input [N-1:0] d;
input ce, clk;
initial q = {N{1'b0}};
always @(posedge clk)
if (ce) q <= d;
endmodule // REGISTER_CE
// Register with reset value
module REGISTER_R(q, d, rst, clk);
parameter N = 1;
parameter INIT = {N{1'b0}};
output reg [N-1:0] q;
input [N-1:0] d;
input rst, clk;
initial q = INIT;
always @(posedge clk)
if (rst) q <= INIT;
else q <= d;
endmodule // REGISTER_R
// Register with reset and clock enable
// Reset works independently of clock enable
module REGISTER_R_CE(q, d, rst, ce, clk);
parameter N = 1;
parameter INIT = {N{1'b0}};
output reg [N-1:0] q;
input [N-1:0] d;
input rst, ce, clk;
initial q = INIT;
always @(posedge clk)
if (rst) q <= INIT;
else if (ce) q <= d;
endmodule // REGISTER_R_CE
/*
Memory Blocks.
*/
// Single-port ROM with asynchronous read
module ASYNC_ROM(q, addr);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input [AWIDTH-1:0] addr; // address
output [DWIDTH-1:0] q; // read data
(* rom_style = "distributed" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
assign q = mem[addr];
endmodule // ASYNC_ROM
// Single-port RAM with asynchronous read
module ASYNC_RAM(q, d, addr, we, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input [AWIDTH-1:0] addr; // address
input we; // write-enable
input [DWIDTH-1:0] d; // write data
output [DWIDTH-1:0] q; // read data
(* ram_style = "distributed" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
always @(posedge clk) begin
if (we)
mem[addr] <= d;
end
assign q = mem[addr];
endmodule // ASYNC_RAM
// Single-port ROM with synchronous read
module SYNC_ROM(q, addr, en, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input en; // ram-enable
input [AWIDTH-1:0] addr; // address
output [DWIDTH-1:0] q; // read data
(* rom_style = "block" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
reg [DWIDTH-1:0] read_data_reg;
always @(posedge clk) begin
if (en) begin
read_data_reg <= mem[addr];
end
end
assign q = read_data_reg;
endmodule // SYNC_ROM
// Single-port RAM with synchronous read
module SYNC_RAM(q, d, addr, we, en, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = 1 << AWIDTH; // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input [AWIDTH-1:0] addr; // address
input we; // write-enable
input en; // ram-enable
input [DWIDTH-1:0] d; // write data
output [DWIDTH-1:0] q; // read data
(* ram_style = "block" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
reg [DWIDTH-1:0] read_data_reg;
always @(posedge clk) begin
if (en) begin
if (we)
mem[addr] <= d;
read_data_reg <= mem[addr];
end
end
assign q = read_data_reg;
endmodule // SYNC_RAM
// Dual-port ROM with synchronous read
module SYNC_ROM_DP(q0, addr0, en0, q1, addr1, en1, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input en0, en1; // ram-enable
input [AWIDTH-1:0] addr0, addr1; // address
output [DWIDTH-1:0] q0, q1; // read data
(* rom_style = "block" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
reg [DWIDTH-1:0] read_data0_reg;
reg [DWIDTH-1:0] read_data1_reg;
always @(posedge clk) begin
if (en0) begin
read_data0_reg <= mem[addr0];
end
end
always @(posedge clk) begin
if (en1) begin
read_data1_reg <= mem[addr1];
end
end
assign q0 = read_data0_reg;
assign q1 = read_data1_reg;
endmodule // SYNC_ROM_DP
// Dual-port RAM with asynchronous read
module ASYNC_RAM_DP(q0, d0, addr0, we0, q1, d1, addr1, we1, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input [AWIDTH-1:0] addr0, addr1; // address
input we0, we1; // write-enable
input [DWIDTH-1:0] d0, d1; // write data
output [DWIDTH-1:0] q0, q1; // read data
(* ram_style = "distributed" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
always @(posedge clk) begin
if (we0)
mem[addr0] <= d0;
end
always @(posedge clk) begin
if (we1)
mem[addr1] <= d1;
end
assign q0 = mem[addr0];
assign q1 = mem[addr1];
endmodule // ASYNC_RAM_DP
// Dual-port RAM with synchronous read
module SYNC_RAM_DP(q0, d0, addr0, we0, en0, q1, d1, addr1, we1, en1, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input [AWIDTH-1:0] addr0, addr1; // address
input we0, we1; // write-enable
input en0, en1; // ram-enable
input [DWIDTH-1:0] d0, d1; // write data
output [DWIDTH-1:0] q0, q1; // read data
(* ram_style = "block" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
reg [DWIDTH-1:0] read_data0_reg, read_data1_reg;
always @(posedge clk) begin
if (en0) begin
if (we0)
mem[addr0] <= d0;
read_data0_reg <= mem[addr0];
end
end
always @(posedge clk) begin
if (en1) begin
if (we1)
mem[addr1] <= d1;
read_data1_reg <= mem[addr1];
end
end
assign q0 = read_data0_reg;
assign q1 = read_data1_reg;
endmodule // SYNC_RAM_DP
// Single-port RAM with synchronous read with write byte-enable
module SYNC_RAM_WBE(q, d, addr, en, wbe, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input [DWIDTH-1:0] d; // Data input
input [AWIDTH-1:0] addr; // Address input
input [DWIDTH/8-1:0] wbe; // write-byte-enable
input en;
input clk;
output [DWIDTH-1:0] q;
(* ram_style = "block" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
reg [DWIDTH-1:0] read_data_reg;
always @(posedge clk) begin
if (en) begin
for (i = 0; i < DWIDTH/8; i = i+1) begin
if (wbe[i])
mem[addr][i*8 +: 8] <= d[i*8 +: 8];
end
read_data_reg <= mem[addr];
end
end
assign q = read_data_reg;
endmodule // SYNC_RAM_WBE
// Dual-port RAM with synchronous read with write byte-enable
module SYNC_RAM_DP_WBE(q0, d0, addr0, en0, wbe0, q1, d1, addr1, en1, wbe1, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = (1 << AWIDTH); // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input [DWIDTH-1:0] d0; // Data input
input [AWIDTH-1:0] addr0; // Address input
input [DWIDTH/8-1:0] wbe0; // write-byte-enable
input en0;
output [DWIDTH-1:0] q0;
input [DWIDTH-1:0] d1; // Data input
input [AWIDTH-1:0] addr1; // Address input
input [DWIDTH/8-1:0] wbe1; // write-byte-enable
input en1;
output [DWIDTH-1:0] q1;
(* ram_style = "block" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
reg [DWIDTH-1:0] read_data0_reg;
reg [DWIDTH-1:0] read_data1_reg;
always @(posedge clk) begin
if (en0) begin
for (i = 0; i < 4; i = i+1) begin
if (wbe0[i])
mem[addr0][i*8 +: 8] <= d0[i*8 +: 8];
end
read_data0_reg <= mem[addr0];
end
end
always @(posedge clk) begin
if (en1) begin
for (i = 0; i < 4; i = i+1) begin
if (wbe1[i])
mem[addr1][i*8 +: 8] <= d1[i*8 +: 8];
end
read_data1_reg <= mem[addr1];
end
end
assign q0 = read_data0_reg;
assign q1 = read_data1_reg;
endmodule // SYNC_RAM_DP_WBE
// Multi-port RAM with two asynchronous-read ports, one synchronous-write port
module ASYNC_RAM_1W2R(d0, addr0, we0, q1, addr1, q2, addr2, clk);
parameter DWIDTH = 8; // Data width
parameter AWIDTH = 8; // Address width
parameter DEPTH = 256; // Memory depth
parameter MIF_HEX = "";
parameter MIF_BIN = "";
input clk;
input [DWIDTH-1:0] d0; // Data input
input [AWIDTH-1:0] addr0; // Address input
input we0; // Write enable
input [AWIDTH-1:0] addr1; // Address input
output [DWIDTH-1:0] q1;
input [AWIDTH-1:0] addr2; // Address input
output [DWIDTH-1:0] q2;
(* ram_style = "distributed" *) reg [DWIDTH-1:0] mem [0:DEPTH-1];
integer i;
initial begin
if (MIF_HEX != "") begin
$readmemh(MIF_HEX, mem);
end
else if (MIF_BIN != "") begin
$readmemb(MIF_BIN, mem);
end
else begin
for (i = 0; i < DEPTH; i = i + 1) begin
mem[i] = 0;
end
end
end
always @(posedge clk) begin
if (we0)
mem[addr0] <= d0;
end
assign q1 = mem[addr1];
assign q2 = mem[addr2];
endmodule // ASYNC_RAM_1W2R
`endif