Skip to content

Fix slow gguf tests #2846

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions lm_eval/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
textsynth,
vllm_causallms,
vllm_vlms,
builtin_gguf
)


Expand Down
142 changes: 142 additions & 0 deletions lm_eval/models/builtin_gguf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
import logging
import time

import requests
from requests.exceptions import RequestException
from tqdm import tqdm

from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from llama_cpp import Llama

logger = logging.getLogger(__name__)

def get_result(logprobs, context_length):
is_greedy = True
offsets = logprobs["text_offset"]
tokens = logprobs["tokens"]
tokens_logprobs = logprobs["token_logprobs"]

idx = 0
while offsets[idx] < context_length:
idx += 1
continuation_logprobs = sum(tokens_logprobs[idx:-1])
for i in range(idx, len(tokens)):
top_tokens = logprobs["top_logprobs"][i]
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
# can be replaced with
# top_token = list(top_tokens.keys())[0]
if top_token != tokens[i]:
is_greedy = False
break

return continuation_logprobs, is_greedy


@register_model("builtin_gguf")
class BUILTIN_GGUFLM(LM):
def __init__(self, model=None, max_length=2048, **kwargs):
super().__init__()
assert model, "must pass `model` to use MY_GGUF LM!"
self.model = Llama(
model_path=model,
n_gpu_layers=-1, # use GPU acceleration
# seed=1337, # set a random seed
n_ctx=2048,
logits_all=True,
verbose=False
)
self.logprobs = 1
self.temperature = 0.0
self.max_length = max_length

def gguf_completion(
self, context, continuation=None, stop=None, **kwargs
):
try:
prompt = context
logprobs = self.logprobs
temperature = self.temperature
max_tokens = 16
echo = False

if continuation:
prompt += continuation
max_tokens = 1
echo = True

if stop is None:
stop = []

response = self.model(
prompt = prompt,
max_tokens = max_tokens,
temperature = temperature,
logprobs = logprobs,
echo = echo,
stop = stop,
)

return response
except ValueError as v:
logger.error(f"The requested tokens exceed the context window: {v}")
except RuntimeError as r:
logger.error(f"the prompt fails to tokenize or the model fails to evaluate the prompt: {r}")

def loglikelihood(self, requests):
if not requests:
return []
res = []
for context, continuation in tqdm([req.args for req in requests]):
response = self.gguf_completion(context=context, continuation=continuation)
if response and "choices" in response and response["choices"]:
choice = response["choices"][0]
logprobs = choice.get("logprobs")
if (
logprobs
and "token_logprobs" in logprobs
and logprobs["token_logprobs"]
):
logprob, is_greedy = get_result(logprobs, len(context))
res.append((logprob, is_greedy))
else:
logger.warning(
"Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list."
)
else:
logger.error(
f"Invalid response for loglikelihood. Response: {response}"
)
assert False
return res

def generate_until(self, requests):
if not requests:
return []

res = []
for request in tqdm([req.args for req in requests]):
inp = request[0]
request_args = request[1]
until = request_args.get("until", ["</s>"])
response = self.gguf_completion(context=inp, stop=until)
if response and "choices" in response and response["choices"]:
choice = response["choices"][0]
if "text" in choice:
generated_text = choice["text"].strip()
res.append(generated_text)
else:
logger.error(
f"Invalid response for greedy_until. Response: {response}"
)
res.append(None) # Add default value in case of error
else:
logger.error(f"Invalid response for greedy_until. Response: {response}")
res.append(None) # Add default value in case of error
return res

def loglikelihood_rolling(self, requests):
raise NotImplementedError(
"loglikelihood_rolling not yet supported for MY_GGUF models"
)