-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpool_avgs.py
455 lines (384 loc) · 14.7 KB
/
pool_avgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# /usr/bin/env python3
""" Process many logs in parallel """
import os
import configargparse
import sys
import numpy as np
import glob
# from multiprocessing import Pool
from multiprocessing import cpu_count
from functools import partial
from timeit import default_timer as timer
import pandas as pd
import re
from tqdm.contrib.concurrent import process_map
import res_vis
# from res_vis import plot_raw_hmaps, add_args
class bcolors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKCYAN = "\033[96m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
parser = configargparse.ArgParser()
log_parser = parser.add_argument_group("Log file processing")
log_parser.add_argument(
"run_info", type=str, help="Name to use for run (has little/no impact)"
)
data_group = parser.add_mutually_exclusive_group(required=True)
data_group.add_argument(
"--pattern", type=str, help="Use regex and glob to choose files"
)
data_group.add_argument(
"--list", type=str, nargs="+", help="Take file names directly as a list"
)
log_parser.add_argument("--save_file", default="out/processed.csv", type=str)
log_parser.add_argument("--omit_outliers", action="store_true")
log_parser.add_argument("--median", action="store_true")
log_parser.add_argument("--remake", action="store_true")
log_parser.add_argument("--baseline_key", default="baseline")
log_parser.add_argument("--aop_key", default="aop")
log_parser.add_argument(
"--outnames",
nargs="+",
default=["aop_", "baseline_"],
help="File names to use instead of aop and baseline",
)
log_parser.add_argument("--fname_pattern", default="*aop_*", help="Test index pattern")
log_parser.add_argument(
"--delimiter", default="_", help="What char to use when breaking up info"
)
log_parser.add_argument(
"--hex", action="store_true", help="Treat indices as hex instead of int"
)
log_parser.add_argument(
"--max_workers", default=cpu_count() * 2, help="Number of workers to use in pool"
)
log_parser.add_argument(
"--group_by",
default=0,
type=int,
help="Which entry in directory name to use as the "
"x-value. Folder names should be formatted "
"[run-name]_[additional-info]_[x-value]. This "
" parameter allows for: "
"[run-name]_[x_value]_[additional-info]. Values "
"should increment from zero and are read "
"right-to-left!",
)
parser.add_argument("--no_plot", action="store_true")
_, _, stat_strategies = res_vis.add_args(parser)
# assert(p is None)
def read_dat(fname_pair, args=None):
"""Get info for an aop/baseline out pair"""
with open(fname_pair[1][0]) as _f:
try:
aop_addr, base_addr = _f.readline().strip().split(",")
except ValueError as _e:
print(f"Error in {fname_pair[1][0]}")
raise _e
if aop_addr == "test" or base_addr == "train":
aop_addr = None
base_addr = None
dat = dict()
for fname in fname_pair[1]:
# if args.debug:
# print(f"Using {fname.split('/')[-1].split('.')[0]} as name")
dat[fname.split("/")[-1].split(".")[0]] = pd.read_csv(
fname, skiprows=0 if aop_addr is None else 1
)
res = pd.concat(dat, axis=1)
# res = pd.concat({f'aop_{fname_pair[0]}':
# pd.read_csv(aop_fname, skiprows=skiprows),
# f'baseline_{fname_pair[0]}':
# pd.read_csv(bas_fname, skiprows=skiprows)},
# axis=1)
# get names of runs with no data
# z_runs = res[res != 0].count() == 0
# z_runs = res.keys()[z_runs]
# if len(z_runs) > 0:
# z_str = ', '.join([f'{x[0]}:{x[1]}' for x in z_runs])
# print(f'{z_str} have no data')
# drop runs with no data
# nz_runs = res[res != 0].count() != 0
# short_res = res[res.keys()[nz_runs]]
# count zero values across all runs
# count = short_res.count().sum()
# zeroes = (short_res == 0).sum().sum()
# print(f'Omitted {zeroes} zero values / {count} values')
# drop zero values
res = res[res != 0]
if args.omit_outliers:
# omitted = res.count().sum() - (res < res.mean() +
# 2*res.std()).sum().sum()
# print(f'Additionally omitted {omitted} outliers / '
# f'{count - zeroes} remaining values')
res = res[res < res.mean() + 2 * res.std()]
try:
keys = {
"train_base_key": [
k[0] for k in res.keys() if "baseline" in k[0] and "train" in k[0]
][0],
"train_aop_key": [
k[0] for k in res.keys() if "aop" in k[0] and "train" in k[0]
][0],
"test_base_key": [
k[0] for k in res.keys() if "baseline" in k[0] and "test" in k[0]
][0],
"test_aop_key": [
k[0] for k in res.keys() if "aop" in k[0] and "test" in k[0]
][0],
}
assert len(fname_pair[1]) == 4, "Wrong number of files"
except IndexError:
keys = {
# 'train_base_key': [k[0] for k in res.keys() if 'ab_data' in
# k[0]][0],
# 'train_aop_key': [k[0] for k in res.keys() if 'a_data' in k[0]][0],
# 'test_base_key': [k[0] for k in res.keys() if 'ab_data' in
# k[0]][0],
# 'test_aop_key': [k[0] for k in res.keys() if 'a_dat' in k[0]][0]
"train_base_key": [k[0] for k in res.keys() if args.baseline_key in k[0]][
0
],
"train_aop_key": [k[0] for k in res.keys() if args.aop_key in k[0]][0],
"test_base_key": [k[0] for k in res.keys() if args.baseline_key in k[0]][0],
"test_aop_key": [k[0] for k in res.keys() if args.aop_key in k[0]][0],
}
assert len(fname_pair[1]) == 2, "Wrong number of files"
# print(train_base_key, addrs['base'])
# # print(final_res[train_base_key].agg([np.mean, np.std]))
# print(res[train_base_key][['test', 'train']].agg([np.mean, np.std]))
# print('')
# print(train_aop_key, addrs['aop'])
# # print(final_res[train_aop_key].agg([np.mean, np.std]))
# print(res[train_aop_key][['test', 'train']].agg([np.mean, np.std]))
if not args.median:
test_base = (
res.mean()[:, "test"][keys["test_base_key"]],
res.std()[:, "test"][keys["test_base_key"]],
)
test_aop = (
res.mean()[:, "test"][keys["test_aop_key"]],
res.std()[:, "test"][keys["test_aop_key"]],
)
train_base = (
res.mean()[:, "train"][keys["train_base_key"]],
res.std()[:, "train"][keys["train_base_key"]],
)
train_aop = (
res.mean()[:, "train"][keys["train_aop_key"]],
res.std()[:, "train"][keys["train_aop_key"]],
)
else:
test_base = (
res.median()[:, "test"][keys["test_base_key"]],
res.std()[:, "test"][keys["test_base_key"]],
)
test_aop = (
res.median()[:, "test"][keys["test_aop_key"]],
res.std()[:, "test"][keys["test_aop_key"]],
)
train_base = (
res.median()[:, "train"][keys["train_base_key"]],
res.std()[:, "train"][keys["train_base_key"]],
)
train_aop = (
res.median()[:, "train"][keys["train_aop_key"]],
res.std()[:, "train"][keys["train_aop_key"]],
)
test_speedup = test_base[0] / test_aop[0]
train_speedup = train_base[0] / train_aop[0]
# print(bcolors.OKBLUE)
# print(f'{args.run_info} Test Speedup: {test_speedup:.3f} '
# f'({test_base[0]:.3f}±{test_base[1]:.2f}/'
# f'{test_aop[0]:.3f}±{test_aop[1]:.2f})')
# print(f'{args.run_info} Train Speedup: {train_speedup:.3f} '
# f'({train_base[0]:.3f}±{train_base[1]:.2f}/'
# f'{train_aop[0]:.3f}±{train_aop[1]:.2f})')
# print(bcolors.ENDC)
info_str = (
f"{fname_pair[2]}_{fname_pair[0]},"
f"{train_speedup:3f}"
f",{test_speedup:3f},"
f"{aop_addr},"
f"{base_addr},"
f"{train_aop[0]:.4f},{train_aop[1]:.4f},"
f"{train_base[0]:.4f},{train_base[1]:.4f},"
f"{test_aop[0]:.4f},{test_aop[1]:.4f},"
f"{test_base[0]:.4f},{test_base[1]:.4f}"
)
# return info_str, test_loc, (aop_addr, base_addr), res
return info_str
def make_pair(test_loc: int, dirname: str, info: str, out_fname_list):
"""Use test loc to build a filename"""
fnames = []
if len(out_fname_list) == 2:
for _f in out_fname_list:
fname = f"{dirname}/{_f}{test_loc}.out"
if not os.path.isfile(fname):
print(f"Failed to find {fname}")
return (test_loc, None, None, None)
fnames.append(fname)
return (test_loc, fnames, info)
# # Check for single-process results
# aop_fname = f'{dirname}/aop_{test_loc}.out'
# bas_fname = f'{dirname}/baseline_{test_loc}.out'
# if os.path.isfile(aop_fname) and os.path.isfile(bas_fname):
# # add print here --> this is the case Michael's logs should be falling
# # into
# return (test_loc, [aop_fname, bas_fname], info)
# Check for multi-process results
if len(out_fname_list) == 4:
aop_train_fname = f"{dirname}/aop_train_{test_loc}.out"
bas_train_fname = f"{dirname}/baseline_train_{test_loc}.out"
aop_test_fname = f"{dirname}/aop_test_{test_loc}.out"
bas_test_fname = f"{dirname}/baseline_test_{test_loc}.out"
if (
os.path.isfile(aop_train_fname)
and os.path.isfile(bas_train_fname)
and os.path.isfile(aop_test_fname)
and os.path.isfile(bas_test_fname)
):
return (
test_loc,
[aop_train_fname, aop_test_fname, bas_train_fname, bas_test_fname],
info,
)
# Found no results!
# print(f'Found nothing for {dirname}/')
return (test_loc, None, None, None)
def read_testsweep(
dirname: str, group_by: int, fname_pattern: str, delimiter: str, outname_list
):
"""Read a single directory of test index sweep values."""
fnames = glob.glob(f"{dirname}/{fname_pattern}.out")
if len(fnames) == 0:
print(f"{dirname} is empty, skipping")
return []
if args.hex:
test_locs = np.array(
[int(f.split("/")[-1].split(".")[0].split("_")[-1], 16) for f in fnames]
)
else:
test_locs = np.array(
[f.split("/")[-1].split(".")[0].split("_")[-1] for f in fnames]
)
# if args.debug:
# print(f'Found {test_locs} in {dirname}')
if not args.hex:
test_locs = test_locs.astype(int)
test_locs.sort()
if args.hex:
test_locs = [hex(t) for t in test_locs]
test_locs = np.unique(test_locs)
if args.debug:
print(f"Found {test_locs} in {dirname}")
_info = dirname.split("/")[-1].split(delimiter)[group_by]
# _info = dirname.split('/')[-1].split(delimiter)[0]
_info = _info.replace("(TM)", "")
_info = _info.replace("(R)", "")
_info = _info.replace("@", "")
_info = _info.replace("(", "")
_info = _info.replace(")", "")
_info = f'{args.run_info.replace("_", "-")}_{_info.replace("_", "-")}'
if args.debug:
print(
f"Info is:"
f" {dirname}"
f' --> {dirname.split("/")[-1]}'
f' --> {dirname.split("/")[-1].split("_")[group_by]}'
f" --> {_info}"
)
fname_pairs = [make_pair(t, dirname, _info, outname_list) for t in test_locs]
# remove invalid configs
fname_pairs = [pair for pair in fname_pairs if pair[1] is not None]
return fname_pairs
def read_sweep(args):
"""Read an entire sweep"""
if args.pattern is not None:
dirnames = glob.glob(args.pattern)
else:
dirnames = args.list
# path = '/'.join(pattern.split('/')[:-1])
# ds = list(filter(re.compile(pattern.split('/')[-1]).match,
# os.listdir(path)))
# dirnames = [path + '/' + d for d in ds]
dirnames.sort()
if args.debug:
print(f'Found: {", ".join(dirnames[0:5])}, ... ,' f'{", ".join(dirnames[-5:])}')
all_dirs = list()
for dirname in dirnames:
all_dirs += read_testsweep(
dirname,
-1 * (args.group_by),
args.fname_pattern,
args.delimiter,
args.outnames,
)
if args.debug:
# print(f'Found: {", ".join(all_dirs[0:5])}, ... ,'
# f'{", ".join(all_dirs[-5:])}')
print(f"Found: {all_dirs[0:5]}")
# with Pool(32) as _p:
# all_dat = _p.map(read_dat, all_dirs)
read_func = partial(read_dat, args=args)
if args.debug:
print(f"Using {args.max_workers} workers")
all_dat = process_map(
read_func, all_dirs, max_workers=args.max_workers, unit="configs", chunksize=1
)
return all_dirs, all_dat
def process_logs(args):
start = timer()
all_names, all_res = read_sweep(args)
start_write = timer()
assert len(all_res) > 0, "Nothing loaded?"
with open(args.save_file, "w+") as _f:
_f.write(
"name,train,test,aop_addr,base_addr,"
"train_aop,train_aop_std,train_base,train_base_std,"
"test_aop,test_aop_std,test_base,test_base_std"
"\n"
)
_f.write("\n".join(all_res))
end = timer()
print(
f"Processed {len(all_names)} configurations in "
f"{start_write - start:.4f} seconds"
)
if end - start_write > 1.0:
print(f"Wrote in {end - start_write:.4f} seconds")
return all_names
if __name__ == "__main__":
args = parser.parse_args()
# print(args)
# print('')
load_files = True
if os.path.isfile(args.save_file):
# if save file exists, prompt to skip
load_files = (
args.remake
or (input(f"{args.save_file} exists, re-make it? [y/N] ") or "n").lower()[0]
== "y"
)
if load_files:
processed_files = process_logs(args)
else:
print(f"Left existing {args.save_file}")
assert os.path.isfile(args.save_file), "How did you get here..?"
if args.no_plot:
sys.exit(0)
dat = res_vis.load_data(args, fname=args.save_file)
# dat = pd.read_csv(args.save_file).set_index('name')
# dat = dat.sort_index(key=lambda col: col.map(lambda x:
# int(x.split('_')[1])*100 +
# int(x.split('_')[2])))
_, _, raw_dat = res_vis.filter_data(dat, stat_strategies, args)
EXP_FNAME = "_".join(args.save_file.split(".")[:-1])
rc = {"figure.figsize": (15, 8)}
res_vis.plot_raw_hmaps(raw_dat, EXP_FNAME, "test", args, rc)