-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean_implementation.py
423 lines (371 loc) · 15.3 KB
/
clean_implementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import argparse
import sys
import numpy as np
import tskit
class Parent(object):
def __init__(self, index, n0, n1):
self.index = index
self.n0 = n0
self.n1 = n1
class PopState(object):
def __init__(self, N):
self.parents = [Parent(i, 2 * i, 2 * i + 1) for i in range(N)]
self.next_parent = N
self.tables = tskit.TableCollection(1.0)
self.buffered_edges = [[[], []] for i in range(N)]
self.pnodes = [(2 * i, 2 * i + 1) for i in range(N)]
self.generation_offsets = [(0, len(self.buffered_edges))]
self.current_generation = 0
# Measure time going forwards.
# Will reverse later
for i in range(N):
self.tables.nodes.add_row(time=0.0)
self.tables.nodes.add_row(time=0.0)
def wright_fisher(ngens, psurvival, popstate):
if psurvival >= 1.0 or psurvival < 0:
raise ValueError("unhelpful survival probability")
for gen in range(1, ngens + 1):
# regulation
dead = []
parent_list = []
for i, p in enumerate(popstate.parents):
if p.index == -1:
raise RuntimeError("oops, dead!")
if np.random.uniform() > psurvival:
parents = np.random.choice(len(popstate.parents), 2)
# "Mendel"
p0node = popstate.parents[parents[0]].n0
i0 = 0
if np.random.uniform() < 0.5:
p0node = popstate.parents[parents[0]].n1
i0 = 1
p1node = popstate.parents[parents[1]].n0
i1 = 0
if np.random.uniform() < 0.5:
p1node = popstate.parents[parents[1]].n1
i1 = 1
parent_list.append(
(
p0node,
p1node,
i0,
i1,
popstate.parents[parents[0]].index,
popstate.parents[parents[1]].index,
)
)
dead.append(i)
x = len(popstate.buffered_edges)
for d, p in zip(dead, parent_list):
# NOTE: apply "dead" flag here
# so that we aren't giving invalid
# indexes in the regulation step above
popstate.parents[d].index = -1
n0 = popstate.tables.nodes.add_row(time=popstate.current_generation + gen)
n1 = popstate.tables.nodes.add_row(time=popstate.current_generation + gen)
popstate.buffered_edges[p[4]][p[2]].append((0, 1, p[0], n0))
popstate.buffered_edges[p[5]][p[3]].append((0, 1, p[1], n1))
popstate.pnodes.append((n0, n1))
popstate.parents[d] = Parent(popstate.next_parent, n0, n1)
popstate.next_parent += 1
popstate.buffered_edges.append([[], []])
if len(dead) > 0:
popstate.generation_offsets.append((x, len(popstate.buffered_edges)))
popstate.current_generation += gen
return popstate
def remap_alive_parent_nodes(pstate, idmap):
for p in pstate.parents:
p.n0 = idmap[p.n0]
p.n1 = idmap[p.n1]
for i in [p.n0, p.n1]:
assert i != tskit.NULL, "alive parent node mapped to NULL"
def index_alive_parent_nodes(alive_parents, nnodes, edges):
isparent = [False for i in range(nnodes)]
ischild = [False for i in range(nnodes)]
isalive = [False for i in range(nnodes)]
minparent = [tskit.NULL for i in range(nnodes)]
maxparent = [tskit.NULL for i in range(nnodes)]
for p in alive_parents:
for n in [p.n0, p.n1]:
isalive[n] = True
for i, e in enumerate(edges):
if isalive[e.parent] is True:
isparent[e.parent] = True
maxparent[e.parent] = i
if minparent[e.parent] == tskit.NULL:
minparent[e.parent] = i
if isalive[e.child] is True:
ischild[e.child] = True
return isparent, ischild, minparent, maxparent
def sort_and_index_alive_parents(alive_parents, nodes, minparent):
times = nodes.time[:]
def f(l1, l2):
if l1 == tskit.NULL and l2 == tskit.NULL:
return np.iinfo(np.uint32).max
if l1 == tskit.NULL:
return l2
elif l2 == tskit.NULL:
return l1
return min(l1, l2)
alive_parents[:] = sorted(
alive_parents, key=lambda x: (times[x.n0], f(minparent[x.n0], minparent[x.n1]))
)
for i, p in enumerate(alive_parents):
p.index = i
def brute_force_merge_and_simplify(pstate):
tc = tskit.TableCollection(pstate.tables.sequence_length)
flags = np.zeros(len(pstate.tables.nodes), dtype=np.uint32)
for p in pstate.parents:
flags[p.n0] = 1
flags[p.n1] = 1
tc.nodes.set_columns(
flags=flags,
time=-1.0 * (pstate.tables.nodes.time - pstate.tables.nodes.time.max()),
)
tc.edges.set_columns(
pstate.tables.edges.left,
pstate.tables.edges.right,
pstate.tables.edges.parent,
pstate.tables.edges.child,
)
for eb in pstate.buffered_edges:
for i in eb[0] + eb[1]:
tc.edges.add_row(*i)
tc.sort()
tc.simplify()
return tc.tree_sequence()
def reedgeucation(pstate, ischild, minparent, maxparent):
"""
Great function name, or best function name ever?
"""
E = 0
edges_new_births = tskit.EdgeTable()
edges_previous_births = tskit.EdgeTable()
for o in reversed(pstate.generation_offsets):
for i in range(*o):
# Get parent node IDs
pnodes = pstate.pnodes[i]
if i < len(pstate.parents):
if minparent[pnodes[0]] == tskit.NULL:
isparent0 = False
else:
isparent0 = True
if minparent[pnodes[1]] == tskit.NULL:
isparent1 = False
else:
isparent1 = True
# mn0 = minparent[pnodes[0]]
mx0 = maxparent[pnodes[0]]
mn1 = minparent[pnodes[1]]
mx1 = maxparent[pnodes[1]]
if isparent0 is True and isparent1 is True:
assert mx0 != tskit.NULL
assert mx1 != tskit.NULL
edges_previous_births.append_columns(
pstate.tables.edges.left[E : mx0 + 1],
pstate.tables.edges.right[E : mx0 + 1],
pstate.tables.edges.parent[E : mx0 + 1],
pstate.tables.edges.child[E : mx0 + 1],
)
E = mx0 + 1
for k in pstate.buffered_edges[i][0]:
assert k[2] == pnodes[0]
edges_previous_births.add_row(*k)
edges_previous_births.append_columns(
pstate.tables.edges.left[E : mx1 + 1],
pstate.tables.edges.right[E : mx1 + 1],
pstate.tables.edges.parent[E : mx1 + 1],
pstate.tables.edges.child[E : mx1 + 1],
)
E = mx1 + 1
for k in pstate.buffered_edges[i][1]:
assert k[2] == pnodes[1]
edges_previous_births.add_row(*k)
elif isparent0 is True:
assert mx0 != tskit.NULL
assert isparent1 is False
edges_previous_births.append_columns(
pstate.tables.edges.left[E : mx0 + 1],
pstate.tables.edges.right[E : mx0 + 1],
pstate.tables.edges.parent[E : mx0 + 1],
pstate.tables.edges.child[E : mx0 + 1],
)
E = mx0 + 1
for k in pstate.buffered_edges[i][0]:
edges_previous_births.add_row(*k)
for k in pstate.buffered_edges[i][1]:
edges_previous_births.add_row(*k)
elif isparent1 is True:
assert mn1 != tskit.NULL
assert mx1 != tskit.NULL
assert isparent0 is False
edges_previous_births.append_columns(
pstate.tables.edges.left[E:mn1],
pstate.tables.edges.right[E:mn1],
pstate.tables.edges.parent[E:mn1],
pstate.tables.edges.child[E:mn1],
)
for k in pstate.buffered_edges[i][0]:
edges_previous_births.add_row(*k)
edges_previous_births.append_columns(
pstate.tables.edges.left[mn1 : mx1 + 1],
pstate.tables.edges.right[mn1 : mx1 + 1],
pstate.tables.edges.parent[mn1 : mx1 + 1],
pstate.tables.edges.child[mn1 : mx1 + 1],
)
for k in pstate.buffered_edges[i][1]:
edges_previous_births.add_row(*k)
E = mx1 + 1
else:
ptime = pstate.tables.nodes.time[pnodes[0]]
if ischild[pnodes[0]] or ischild[pnodes[1]]:
while (
E < len(pstate.tables.edges)
and pstate.tables.nodes.time[pstate.tables.edges.parent[E]]
< ptime
):
e = pstate.tables.edges[E]
edges_previous_births.add_row(
e.left, e.right, e.parent, e.child
)
E += 1
for n in [0, 1]:
for k in pstate.buffered_edges[i][n]:
assert k[2] == pnodes[n], f"{k} {pnodes}"
edges_previous_births.add_row(*k)
else:
for n in [0, 1]:
for k in pstate.buffered_edges[i][n]:
assert k[2] == pnodes[n]
edges_new_births.add_row(*k)
while E < len(pstate.tables.edges):
edges_previous_births.add_row(
pstate.tables.edges[E].left,
pstate.tables.edges[E].right,
pstate.tables.edges[E].parent,
pstate.tables.edges[E].child,
)
E += 1
pstate.tables.edges.set_columns(
edges_new_births.left,
edges_new_births.right,
edges_new_births.parent,
edges_new_births.child,
)
pstate.tables.edges.append_columns(
edges_previous_births.left,
edges_previous_births.right,
edges_previous_births.parent,
edges_previous_births.child,
)
def make_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
optional = parser.add_argument_group("Simulation parameters")
optional.add_argument(
"--popsize", "-N", default=100, type=int, help="Diploid population size"
)
optional.add_argument("--seed", type=int, default=42, help="RNG seed")
optional.add_argument(
"--psurvival",
"-p",
type=float,
default=0.9,
help="Survival probability per generation",
)
optional.add_argument(
"--burnin", "-b", type=int, default=20, help="Burnin time. Multiple of N"
)
return parser
if __name__ == "__main__":
parser = make_parser()
args = parser.parse_args(sys.argv[1:])
np.random.seed(args.seed)
pstate = PopState(args.popsize)
pstate = wright_fisher(args.burnin * args.popsize, args.psurvival, pstate)
# After one bout of simulation, things are easy,
# an we can simply populate the edge table
for o in reversed(pstate.generation_offsets):
for i in range(*o):
for j in pstate.buffered_edges[i][0]:
pstate.tables.edges.add_row(*j)
for j in pstate.buffered_edges[i][1]:
pstate.tables.edges.add_row(*j)
# reset the buffer
for j in pstate.buffered_edges[i]:
j.clear()
# Simplify with respect to currently alive individuals
# 1. Set the sample flag for them
flags = np.zeros(len(pstate.tables.nodes), dtype=np.uint32)
for p in pstate.parents:
for i in [p.n0, p.n1]:
flags[i] = tskit.NODE_IS_SAMPLE
# 2. Set the flags + reverse time
pstate.tables.nodes.set_columns(
flags=flags,
time=-1.0 * (pstate.tables.nodes.time - pstate.tables.nodes.time.max()),
)
# 3. Simplify
idmap = pstate.tables.simplify()
# Post-simplification cleanup required if we are going
# to simulate more and then simplify again
# 1. Remap alive parent nodes. This is normal/expected procedure.
remap_alive_parent_nodes(pstate, idmap)
# 2. Figure out if & where each parental node is in the
# simplified edge table
# Complexity: O(no. edges)
isparent, ischild, minparent, maxparent = index_alive_parent_nodes(
pstate.parents, len(pstate.tables.nodes), pstate.tables.edges
)
# 3. We need to sort the alive parents, and re-index them
sort_and_index_alive_parents(pstate.parents, pstate.tables.nodes, minparent)
for p in pstate.parents:
w = minparent[p.n0]
w2 = minparent[p.n1]
with open("after_sorting_parents_cleaner.txt", "w") as f:
for p in pstate.parents:
ptime = pstate.tables.nodes.time[p.n0]
w = minparent[p.n0]
w2 = minparent[p.n1]
f.write(
f"{p.n0} {p.n1}-> ({ptime} {w} {w2} {isparent[p.n0]} {isparent[p.n1]})\n"
)
# sys.exit(0)
# 4. Reset the buffer and the index
pstate.buffered_edges = [[[], []] for i in range(len(pstate.parents))]
# 5. Update the index value of the next birth
pstate.next_parent = len(pstate.buffered_edges)
# 6. Reset offsets
pstate.generation_offsets = [(0, len(pstate.buffered_edges))]
# 7. Reset master parent node list
pstate.pnodes = [(i.n0, i.n1) for i in pstate.parents]
# 8. Reset flags and change time from backwards to forwards
flags = np.zeros(len(pstate.tables.nodes), dtype=np.uint32)
newtime = np.array(
[pstate.current_generation - i for i in pstate.tables.nodes.time]
)
pstate.tables.nodes.set_columns(flags=flags, time=newtime)
# Evolve again for a short bit of time
pstate = wright_fisher(20, args.psurvival, pstate)
# For testing, we merge the data "the old way"
# and return a tree sequence
ts_classic_method = brute_force_merge_and_simplify(pstate)
flags = np.zeros(len(pstate.tables.nodes), dtype=np.uint32)
for p in pstate.parents:
flags[p.n0] = 1
flags[p.n1] = 1
pstate.tables.nodes.set_columns(
flags=flags,
time=-1.0 * (pstate.tables.nodes.time - pstate.tables.nodes.time.max()),
)
reedgeucation(pstate, ischild, minparent, maxparent)
idmap = pstate.tables.simplify()
ts = pstate.tables.tree_sequence()
# print trees to file
next(ts_classic_method.trees()).draw(
path="brute_force.svg", format="svg", height=1000, width=1000
)
next(ts.trees()).draw(path="buffered.svg", format="svg", height=1000, width=1000)
# for e in ts.tables.edges:
# print(e)