-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRTC_Buildin.cpp
284 lines (244 loc) · 6.95 KB
/
RTC_Buildin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#include "RTC_Buildin.h"
#include <libmaple/libmaple.h>
#include <libmaple/rcc.h>
#include <libmaple/nvic.h>
#include <libmaple/bitband.h>
#include <libmaple/pwr.h>
#include <libmaple/bkp.h>
#include <libmaple/exti.h>
#define EXTI_RTC_ALARM_BIT 17 // Bug. Must be in exti.h
#ifdef __AVR__
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#elif defined(ARDUINO_ARCH_SAMD)
// nothing special needed
#elif defined(ARDUINO_SAM_DUE)
#define PROGMEM
#define pgm_read_byte(addr) (*(const unsigned char *)(addr))
#endif
/* Control register high (CRH) */
#define RTC_CRH_OWIE_BIT 2
#define RTC_CRH_ALRIE_BIT 1
#define RTC_CRH_SECIE_BIT 0
#define RTC_CRH_OWIE BIT(RTC_CRH_OWIE_BIT)
#define RTC_CRH_ALRIE BIT(RTC_CRH_ALRIE_BIT)
#define RTC_CRH_SECIE BIT(RTC_CRH_SECIE_BIT)
/* Control register low (CRL) */
#define RTC_CRL_RTOFF_BIT 5
#define RTC_CRL_CNF_BIT 4
#define RTC_CRL_RSF_BIT 3
#define RTC_CRL_OWF_BIT 2
#define RTC_CRL_ALRF_BIT 1
#define RTC_CRL_SECF_BIT 0
#define RTC_CRL_RTOFF BIT(RTC_CRL_RTOFF_BIT)
#define RTC_CRL_CNF BIT(RTC_CRL_CNF_BIT)
#define RTC_CRL_RSF BIT(RTC_CRL_RSF_BIT)
#define RTC_CRL_OWF BIT(RTC_CRL_OWF_BIT)
#define RTC_CRL_ALRF BIT(RTC_CRL_ALRF_BIT)
#define RTC_CRL_SECF BIT(RTC_CRL_SECF_BIT)
#define handle_irq(dier_sr, irq_mask, handlers, iid, handled_irq) do { \
if ((dier_sr) & (irq_mask)) { \
void (*__handler)(void) = (handlers)[iid]; \
if (__handler) { \
__handler(); \
handled_irq |= (irq_mask); \
} \
} \
} while (0)
void RTC_Buildin::begin(ClockSources src)
{
bkp_init();
bkp_enable_writes();
RCC_BASE->BDCR &= ~RCC_BDCR_RTCSEL;
uint32 prescaler = 0;
switch (src)
{
case RTC_Buildin::RTCSEL_NONE:
RCC_BASE->BDCR = RCC_BDCR_RTCSEL_NONE;
break;
default: // LSE by default
case RTC_Buildin::RTCSEL_DEFAULT:
case RTC_Buildin::RTCSEL_LSE:
rcc_start_lse();
RCC_BASE->BDCR |= RCC_BDCR_RTCSEL_LSE;
prescaler = 0x7FFF;
break;
case RTC_Buildin::RTCSEL_LSI:
rcc_start_lsi();
RCC_BASE->BDCR |= RCC_BDCR_RTCSEL_LSI;
prescaler = 0x9C3F;
break;
case RTC_Buildin::RTCSEL_HSE:
rcc_start_hse();
RCC_BASE->BDCR |= RCC_BDCR_RTCSEL_HSE;
prescaler = 0xF423;
break;
}
bb_peri_set_bit(&RCC_BASE->BDCR, RCC_BDCR_RTCEN_BIT, 1); // Enable RTC
_clear_sync();
_wait_sync();
_wait_finished();
if (prescaler != 0)
_set_prescaler_load(prescaler);
}
void RTC_Buildin::adjust(const DateTime & dt)
{
_set_clock(dt.unixtime());
}
DateTime RTC_Buildin::now()
{
return (uint32_t)_get_clock();
}
void RTC_Buildin::CreateAlarm(voidFuncPtr function, DateTime dt)
{
//_set_alarm();
}
inline void RTC_Buildin::_wait_finished()
{
while (*bb_perip(®s->CRL, RTC_CRL_RTOFF_BIT) == 0);
}
inline void RTC_Buildin::_clear_sync()
{
_wait_finished();
*bb_perip(®s->CRL, RTC_CRL_RSF_BIT) = 0;
}
inline void RTC_Buildin::_wait_sync()
{
while (*bb_perip(®s->CRL, RTC_CRL_RSF_BIT) == 0);
}
inline void RTC_Buildin::_enter_config_mode()
{
_wait_finished();
*bb_perip(®s->CRL, RTC_CRL_CNF_BIT) = 1;
}
inline void RTC_Buildin::_exit_config_mode()
{
_wait_finished();
*bb_perip(®s->CRL, RTC_CRL_CNF_BIT) = 0;
}
inline void RTC_Buildin::_enable_irq(_interrupts interrupt)
{
_wait_finished();
if (interrupt == RTC_INT_ALARM_OTHER) { // Enabling this interrupt allows waking up from deep sleep via WFI.
*bb_perip(&EXTI_BASE->IMR, EXTI_RTC_ALARM_BIT) = 1;
*bb_perip(&EXTI_BASE->RTSR, EXTI_RTC_ALARM_BIT) = 1;
}
else *bb_perip(®s->CRH, interrupt) = 1;
}
inline void RTC_Buildin::_disable_irq(_interrupts interrupt)
{
_wait_finished();
if (interrupt == RTC_INT_ALARM_OTHER) {
*bb_perip(&EXTI_BASE->IMR, EXTI_RTC_ALARM_BIT) = 0;
*bb_perip(&EXTI_BASE->RTSR, EXTI_RTC_ALARM_BIT) = 0;
}
else *bb_perip(®s->CRH, interrupt) = 0;
}
void RTC_Buildin::_attach_interrupt(_interrupts interrupt, voidFuncPtr handler)
{
handlers[interrupt] = handler;
_enable_irq(interrupt);
switch (interrupt) {
case RTC_INT_EVERYSECOND: nvic_irq_enable(NVIC_RTC); break;
case RTC_INT_OVERFLOW: nvic_irq_enable(NVIC_RTC); break;
case RTC_INT_ALARM_GLOBAL: nvic_irq_enable(NVIC_RTC); break;
case RTC_INT_ALARM_OTHER: nvic_irq_enable(NVIC_RTCALARM); break;
}
}
void RTC_Buildin::_detach_interrupt(_interrupts interrupt)
{
_disable_irq(interrupt);
handlers[interrupt] = NULL;
}
void RTC_Buildin::__irq_rtc(void)
{
uint32 dsr = regs->CRH & regs->CRL;
void(**hs)(void) = handlers;
uint32 handled = 0;
handle_irq(dsr, RTC_CRL_SECF, hs, RTC_INT_EVERYSECOND, handled);
handle_irq(dsr, RTC_CRL_ALRF, hs, RTC_INT_ALARM_GLOBAL, handled);
handle_irq(dsr, RTC_CRL_OWF, hs, RTC_INT_OVERFLOW, handled);
regs->CRL &= ~handled;
}
void RTC_Buildin::__irq_rtcalarm(void)
{
void(*handler)(void) = handlers[RTC_INT_ALARM_OTHER];
if (handler) {
handler();
*bb_perip(&EXTI_BASE->PR, EXTI_RTC_ALARM_BIT) = 1;
//asm volatile("nop"); // See comment in exti.c. Doesn't seem to be required.
//asm volatile("nop");
}
}
void RTC_Buildin::_set_prescaler_load(uint32 value)
{
_clear_sync();
_wait_sync();
_wait_finished();
_enter_config_mode();
regs->PRLH = (value >> 16) & 0xffff;
regs->PRLL = value & 0xffff;
_exit_config_mode();
_wait_finished();
}
uint32 RTC_Buildin::_get_divider()
{
uint32 h, l;
_clear_sync();
_wait_sync();
_wait_finished();
h = regs->DIVH & 0x000f;
l = regs->DIVL & 0xffff;
return (h << 16) | l;
}
void RTC_Buildin::_set_alarm(uint32 value) {
_clear_sync();
_wait_sync();
_wait_finished();
_enter_config_mode();
regs->ALRH = (value >> 16) & 0xffff;
regs->ALRL = value & 0xffff;
_exit_config_mode();
_wait_finished();
}
inline void RTC_Buildin::_enable_alarm_event()
{
*bb_perip(&EXTI_BASE->EMR, EXTI_RTC_ALARM_BIT) = 1;
*bb_perip(&EXTI_BASE->RTSR, EXTI_RTC_ALARM_BIT) = 1;
}
inline void RTC_Buildin::_disable_alarm_event()
{
*bb_perip(&EXTI_BASE->EMR, EXTI_RTC_ALARM_BIT) = 0;
*bb_perip(&EXTI_BASE->RTSR, EXTI_RTC_ALARM_BIT) = 0;
}
inline int RTC_Buildin::_is_second()
{
return *bb_perip(®s->CRL, RTC_CRL_SECF_BIT);
}
inline int RTC_Buildin::_is_alarm()
{
return *bb_perip(®s->CRL, RTC_CRL_ALRF_BIT);
}
inline int RTC_Buildin::_is_overflow()
{
return *bb_perip(®s->CRL, RTC_CRL_OWF_BIT);
}
uint32 RTC_Buildin::_get_clock()
{
_clear_sync();
_wait_sync();
_wait_finished();
return ((regs->CNTH & 0xffff) << 16) | (regs->CNTL & 0xffff);
}
void RTC_Buildin::_set_clock(uint32 value)
{
_clear_sync();
_wait_sync();
_wait_finished();
_enter_config_mode();
regs->CNTH = (value >> 16) & 0xffff;
regs->CNTL = value & 0xffff;
_exit_config_mode();
_wait_finished();
}