-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodes_comparison.py
194 lines (153 loc) · 9.66 KB
/
modes_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import copy
import csv
import itertools
import os
import numpy as np
import torch
from FaultGenerators.FaultListGenerator import FaultListGenerator
from FaultInjectionManager import FaultInjectionManager
from OutputFeatureMapsManager.OutputFeatureMapsManager import OutputFeatureMapsManager
from utils import get_network, get_device, parse_args, get_loader, get_module_classes, \
get_delayed_start_module, enable_optimizations, get_fault_list
def main(args):
# Set deterministic algorithms
torch.use_deterministic_algorithms(mode=True)
# Select the device
device = get_device(forbid_cuda=args.forbid_cuda,
use_cuda=args.use_cuda,
cuda_device=args.cuda_device)
print(f'Using device {device}')
# Load the network
network = get_network(network_name=args.network_name,
device=device)
# Load the dataset
loader = get_loader(network_name=args.network_name,
batch_size=args.batch_size)
# Folder containing the feature maps
fm_folder = f'output/feature_maps/{args.network_name}/batch_{args.batch_size}'
os.makedirs(fm_folder, exist_ok=True)
# Folder containing the clean output
clean_output_folder = f'output/clean_output/{args.network_name}/batch_{args.batch_size}'
# Se the module class for the smart operations
module_classes = get_module_classes(network_name=args.network_name)
ofm_manager = OutputFeatureMapsManager(network=network,
loader=loader,
module_classes=module_classes,
device=device,
fm_folder=fm_folder,
clean_output_folder=clean_output_folder,
save_compressed=args.save_compressed)
# Try to load the clean input
ofm_manager.load_clean_output(force_reload=args.force_reload)
# Generate fault list
fault_list_generator = FaultListGenerator(network=network,
network_name=args.network_name,
device=device,
module_class=[torch.nn.Conv2d],
input_size=loader.dataset[0][0].unsqueeze(0).shape,
avoid_last_lst_fc_layer=False)
for fault_dropping, fault_delayed_start in reversed(list(itertools.product([True, False], repeat=2))):
# ----- DEBUG ----- #
# Skip all FI with delayed start
# if fault_delayed_start:`
# continue
# Skip all FI with fault dropping
# if fault_dropping:
# continue
# Skip all FI without delayed start
# if not fault_delayed_start:
# continue
# Skip all FI without fault dropping
# if not fault_dropping:
# continue
# Only fully optimized FI
# if not (fault_delayed_start and fault_dropping):
# continue
# Only unoptimized FI
if fault_delayed_start or fault_dropping:
continue
# Only unoptimized or fully optimized FI
# if not (not (fault_delayed_start and fault_dropping)) or (fault_delayed_start and fault_dropping):
# continue
# ----- DEBUG ----- #
# Create a smart network. a copy of the network with its convolutional layers replaced by their smart counterpart
smart_network = copy.deepcopy(network)
# TODO: this breaks things sometimes, find out why
fault_list_generator.update_network(smart_network)
# Manage how many fault to inject (in case of faults in the neurons)
total_neurons = None
if args.fault_model == 'byzantine_neuron':
total_neurons = sum([np.prod(layer.output_shape) for layer in fault_list_generator.injectable_output_modules_list])
# Manage the fault models
fault_list, fault_list_file, fault_list_length, injectable_modules = get_fault_list(fault_model=args.fault_model,
fault_list_generator=fault_list_generator,
exhaustive=args.exhaustive,
total_neurons=total_neurons,
bit_wise=args.bit_wise,
e=.01,
t=1.68,
multiple_fault_percentage=args.multiple_fault_percentage,
multiple_fault_number=args.multiple_fault_number)
if not args.forbid_cuda and args.use_cuda:
print('Clearing cache')
torch.cuda.empty_cache()
if fault_delayed_start:
delayed_start_module = get_delayed_start_module(network=smart_network,
network_name=args.network_name)
else:
delayed_start_module = None
# Enable fault delayed start and fault dropping
injectable_modules, smart_modules_list = enable_optimizations(
network=smart_network,
delayed_start_module=delayed_start_module,
module_classes=module_classes,
device=device,
fm_folder=fm_folder,
fault_list_generator=fault_list_generator,
fault_list=fault_list,
input_size=loader.dataset[0][0].unsqueeze(0).shape,
injectable_modules=injectable_modules,
fault_delayed_start=fault_delayed_start,
fault_dropping=fault_dropping)
# Execute the fault injection campaign with the smart network
fault_injection_executor = FaultInjectionManager(network=smart_network,
network_name=args.network_name,
device=device,
smart_modules_list=smart_modules_list,
loader=loader,
bit_wise=args.bit_wise,
clean_output=ofm_manager.clean_output,
injectable_modules=injectable_modules)
fault_injection_executor.run_clean_campaign()
# Manage the OFM file extension
if args.save_compressed:
golden_ifm_file_extension='npz'
else:
golden_ifm_file_extension='npy'
# Run the fault injection campaign
elapsed_time, avg_memory_occupation = fault_injection_executor.run_fault_injection_campaign(fault_model=args.fault_model,
fault_list=fault_list,
fault_list_file=fault_list_file,
fault_list_length=fault_list_length,
exhaustive=args.exhaustive,
chunk_size=int(1e5) if args.exhaustive else None,
fault_dropping=fault_dropping,
fault_delayed_start=fault_delayed_start,
delayed_start_module=delayed_start_module,
golden_ifm_file_extension='npz',
first_batch_only=False,
save_output=True,
multiple_fault_percentage=args.multiple_fault_percentage,
multiple_fault_number=args.multiple_fault_number)
if not args.no_log_results:
os.makedirs('log', exist_ok=True)
log_path = f'log/{args.network_name}.csv'
with open(log_path, 'a') as file_log:
writer = csv.writer(file_log)
# For the first row write the header first
if os.stat(log_path).st_size == 0:
writer.writerow(['Fault Model', 'Batch Size', 'Fault Dropping', 'Fault Delayed Start', 'Time', 'Avg. Memory Occupation'])
# Log the results of the fault injection campaign
writer.writerow([args.fault_model, args.batch_size, fault_dropping, fault_delayed_start, elapsed_time, avg_memory_occupation])
if __name__ == '__main__':
main(args=parse_args())