-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
68 lines (51 loc) · 2.52 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch.nn as nn
import torch
class Encoder(nn.Module):
def __init__(self, embedding=None, hid_dim=128, n_layers=1, output_dim=128, dropout=0.1, bidirectional=True):
super().__init__()
self.embedding = embedding
self.emb_dim = embedding.embedding_dim
self.hid_dim = hid_dim
self.n_layers = n_layers
self.bidirectional = bidirectional
self.rnn = nn.GRU(self.emb_dim, self.hid_dim, num_layers = self.n_layers, dropout = dropout, bidirectional=self.bidirectional)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_lens):
embedded = self.dropout(self.embedding(src))
# packed_emb:
# - data: (sum(batch_sizes), word_vec_size)
# - batch_sizes: list of batch sizes
packed_emb = nn.utils.rnn.pack_padded_sequence(embedded, src_lens, enforce_sorted=False)
packed_outputs, hidden = self.rnn(packed_emb)
# outputs: (max_src_len, batch_size, hidden_size * num_directions)
# output_lens == src_lens
outputs, output_lens = nn.utils.rnn.pad_packed_sequence(packed_outputs)
if self.bidirectional:
# (num_layers * num_directions, batch_size, hidden_size)
# => (num_layers, batch_size, hidden_size * num_directions)
hidden = self._cat_directions(hidden)
return outputs, hidden
def _cat_directions(self, hidden):
""" If the encoder is bidirectional, do the following transformation.
Ref: https://github.com/IBM/pytorch-seq2seq/blob/master/seq2seq/models/DecoderRNN.py#L176
-----------------------------------------------------------
In: (num_layers * num_directions, batch_size, hidden_size)
(ex: num_layers=2, num_directions=2)
layer 1: forward__hidden(1)
layer 1: backward_hidden(1)
layer 2: forward__hidden(2)
layer 2: backward_hidden(2)
-----------------------------------------------------------
Out: (num_layers, batch_size, hidden_size * num_directions)
layer 1: forward__hidden(1) backward_hidden(1)
layer 2: forward__hidden(2) backward_hidden(2)
"""
def _cat(h):
return torch.cat([h[0:h.size(0):2], h[1:h.size(0):2]], 2)
if isinstance(hidden, tuple):
# LSTM hidden contains a tuple (hidden state, cell state)
hidden = tuple([_cat(h) for h in hidden])
else:
# GRU hidden
hidden = _cat(hidden)
return hidden