-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_recommder.py
448 lines (368 loc) · 17.5 KB
/
train_recommder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.distributions.categorical import Categorical
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset import APIDataset, collate_fn
from decoder import Decoder
from encoder import Encoder
from metric_new import metric
from utils import SequenceEncoder, sequence_mask
from utils import sumary, attention_map, get_indices, random_seed
topK = 10
top_k_list = [1, 5, 10]
epochs = 30
batch_size = 200
# 实验参数
num_layer = 1
hidden_dim = 200
dropout = 0.2
word_dim = 300
use_reinforcement_loss = False
use_retrieval = True
if use_reinforcement_loss:
print('use reinforcement')
Train_Loss_list = []
Valid_Loss_list = []
Hit_ratio_list = []
NDCG_list = []
X_train, X_test, oov_api = get_indices()
train_dataset = APIDataset(X_train, '/data/Semantic_train.csv', '/data/Semantic_train_api.csv', oov=oov_api, word_dim=word_dim)
api_size = len(train_dataset.tgt_vocab)
test_dataset = APIDataset(X_test, '/data/Semantic_test.csv', '/data/Semantic_test_api.csv', train_dataset=train_dataset)
train_iter = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
collate_fn=collate_fn)
test_iter = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=0,
collate_fn=collate_fn)
encoder_embedding = nn.Embedding(len(train_dataset.src_vocab), train_dataset.src_vocab.vectors.shape[1])
decoder_embedding = nn.Embedding(len(train_dataset.tgt_vocab), train_dataset.src_vocab.vectors.shape[1])
encoder_embedding.weight.data.copy_(train_dataset.src_vocab.vectors)
encoder_embedding.weight.requires_grad = True
decoder_embedding.weight.requires_grad = True
encoder = Encoder(embedding=encoder_embedding, hid_dim=hidden_dim, n_layers=num_layer, output_dim=hidden_dim,
dropout=dropout).cuda()
decoder = Decoder(embedding=decoder_embedding, hid_dim=hidden_dim * 2, n_layers=num_layer, output_dim=api_size,
dropout=dropout).cuda()
criterion = nn.CrossEntropyLoss() #
encoder_optimizer = optim.Adam(encoder.parameters(), lr=0.001, weight_decay=1e-5)
decoder_optimizer = optim.Adam(decoder.parameters(), lr=0.001, weight_decay=1e-5)
lr_scheduler_encoder = torch.optim.lr_scheduler.ExponentialLR(optimizer=encoder_optimizer,
gamma=0.99) # gamma 越小 lr 下降越多
lr_scheduler_decoder = torch.optim.lr_scheduler.ExponentialLR(optimizer=decoder_optimizer, gamma=0.99)
def reward_function(decoded_seqs, ref_seqs, device):
ref_seqs = ref_seqs.permute(1, 0)[:, 1:]
scores = []
for i in range(ref_seqs.shape[0]):
try:
ref_set = set(ref_seqs[i].tolist())
ref_set.discard(1)
ref_set.discard(0)
ref_set.discard(2)
ref_set.discard(3)
dec_set = set(decoded_seqs[i].tolist())
dec_set.discard(1)
dec_set.discard(0)
dec_set.discard(2)
dec_set.discard(3)
if (len(ref_set) == 0 ):
print('ref is none')
score = 0
elif(len(dec_set) == 0):
print('dec is none')
score = 0
else:
score = (len(dec_set.intersection(ref_set))) / (
len(ref_set)) +(len(dec_set.intersection(ref_set)))/(len(dec_set))
except Exception:
score = 0
print("Error occured at:")
print("decoded_sents:", decoded_seqs[i])
print("original_sents:", ref_seqs[i])
scores.append(score)
rouge_l_f1 = scores
rouge_l_f1 = torch.tensor(rouge_l_f1, dtype=torch.float, device=device)
return rouge_l_f1
def decode_one_batch_rl(greedy, hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens):
# No teacher forcing for RL
log_probs = []
decode_ids = []
dec_padding_mask = []
mask_t = torch.ones(len(src_lens), dtype=torch.long).cuda()
y_t = tgt[0]
# there is at least one token in the decoded seqs, which is STOP_DECODING
for di in range(10):
y_t_1 = y_t
# first we have coverage_t_1, then we have a_t
prediction, hidden_n, attention_weights = decoder(y_t_1, hidden_n, outputs, outputs_category, src_lens,
category_lens)
prediction = F.softmax(prediction, 1)
if not greedy:
# sampling
multi_dist = Categorical(prediction)
y_t = multi_dist.sample()
log_prob = multi_dist.log_prob(y_t)
log_probs.append(log_prob)
y_t = y_t.squeeze(0).detach()
dec_padding_mask.append(mask_t.detach().clone())
mask_t[(mask_t == 1).long() + (y_t == 1).long() == 2] = 0
else:
# baseline
# y_t = prediction.argmax(2).squeeze(0)
y_t = prediction.topk(6).indices[:, :, 0]
y_t = y_t.squeeze(0).detach()
decode_ids.append(y_t)
decode_ids = torch.stack(decode_ids, 1)
if not greedy:
dec_padding_mask = torch.stack(dec_padding_mask, 1).float()
log_probs = torch.stack(log_probs, 1).squeeze(0).permute(1, 0).float() * dec_padding_mask
dec_lens = dec_padding_mask.sum(1)
log_probs = log_probs.sum(1) / dec_lens
return decode_ids, log_probs
def infer_one_batch_ml(
hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens):
teacher_forcing_ratio = 0.5
teacher_forcing = True if random.random() < teacher_forcing_ratio else False
predictions = torch.full([10, src_lens.shape[0], api_size], 0, dtype=torch.float32).cuda()
step_losses = []
for di in range(10):
if di == 0:
y_t_1 = tgt[di]
else:
y_t_1 = y_t
# first we have coverage_t_1, then we have a_t
prediction, hidden_n, attention_weights = decoder(y_t_1, hidden_n, outputs, outputs_category, src_lens,
category_lens)
# if pointer_gen is True, the target will use the extend_vocab
target = tgt[di + 1]
# batch
y_t = prediction.argmax(2).squeeze(0)
predictions[di] = prediction
loss = criterion(predictions.view(-1, predictions.shape[-1]), tgt[1:, :].contiguous().view(-1))
# sum_losses = torch.sum(torch.stack(step_losses, 1), 1)
# batch_avg_loss = sum_losses / 10
# loss = loss + torch.mean(batch_avg_loss)
return loss
def infer_one_batch_rl(hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens):
# decode one batch
decode_input = [hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens]
sample_seqs, rl_log_probs = decode_one_batch_rl(False, *decode_input)
with torch.autograd.no_grad():
baseline_seqs, _ = decode_one_batch_rl(True, *decode_input)
sample_reward = reward_function(sample_seqs, tgt, device='cuda:0')
baseline_reward = reward_function(baseline_seqs, tgt, device='cuda:0')
rl_loss = -(sample_reward - baseline_reward) * rl_log_probs
rl_loss = torch.mean(rl_loss)
batch_reward = torch.mean(sample_reward)
return rl_loss, batch_reward
def decode_greedy(
hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens, hidden_retrive, outputs_retrive,
retrive_lens, outputs_retrive2, retrive2_lens, outputs_retrieve_category, retrieve_category_lens, tgt_apis, mashup_names):
decode_seq = []
for di in range(10):
if di == 0:
y_t_1 = tgt[di]
else:
y_t_1 = y_t
# first we have coverage_t_1, then we have a_t
prediction, hidden_n, attention_weights = decoder(y_t_1, hidden_n, outputs, outputs_category, src_lens,
category_lens)
prediction2, hidden_n2, attention_weights2 = decoder(y_t_1, hidden_retrive, outputs_retrive,
outputs_retrieve_category,
retrive_lens, retrieve_category_lens)
outputs_retrive2 = torch.tensor(outputs_retrive2)
ones = torch.ones_like(outputs_retrive2)
mul_ = (ones - outputs_retrive2).repeat(1430, 1).permute(1, 0).unsqueeze(0).cuda() # 1430 服务个数
if use_retrieval:
y_t = (prediction+prediction2*mul_).argmax(2).squeeze(0)
else:
y_t = (prediction).argmax(2).squeeze(0)
if di == 0:
topk = torch.topk(prediction, 10, 2)
'''all_mashup_services = train_dataset.translate(topk.indices.squeeze(0).cpu().numpy())
for idx, apis in enumerate(tgt_apis):
if len(apis) > 2:
tgt_set = set(tgt_apis[idx])
gen_set = set(all_mashup_services[idx])
results = tgt_set.intersection(gen_set)
if len(results) > 2:
print(mashup_names[idx])
print(tgt_apis[idx])
print(all_mashup_services[idx])'''
ndcg_, recall_, ap_, pre_ = 0, 0, 0, 0
#ndcg_, recall_, ap_, pre_ = metric(tgt.permute(1, 0)[:, 1:].cpu().numpy(),
#topk.indices.squeeze(0).cpu().numpy(), [1, 5, 10])
decode_seq.append(y_t.tolist())
return decode_seq, ndcg_, recall_, ap_, pre_
def test(epoch, num_epoch):
encoder.eval()
decoder.eval()
epoch_loss = 0
epoch_rl_loss = 0
index = 0
ndcg_g = np.zeros(len(top_k_list))
recall_g = np.zeros(len(top_k_list))
ap_g = np.zeros(len(top_k_list))
pre_g = np.zeros(len(top_k_list))
ndcg_r = np.zeros(len(top_k_list))
recall_r = np.zeros(len(top_k_list))
ap_r = np.zeros(len(top_k_list))
pre_r = np.zeros(len(top_k_list))
with tqdm(enumerate(test_iter), total=len(test_iter)) as loop:
max_len = 10
for batch_id, batch_data in loop:
src = batch_data[2].cuda()
tgt = batch_data[3].cuda()
src_lens = batch_data[4]
tgt_lens = batch_data[5]
mashup_names = batch_data[6]
category = batch_data[7].cuda()
category_lens = batch_data[9]
retrive = batch_data[11].cuda()
retrive_lens = batch_data[12]
retrive2 = batch_data[14]
retrive2_lens = batch_data[15]
retrieve_category_seqs = batch_data[16].cuda()
retrieve_category_lens = batch_data[17]
tgt_apis = batch_data[1]
src_lens = Variable(torch.LongTensor(src_lens)).cuda()
tgt_lens = Variable(torch.LongTensor(tgt_lens)).cuda()
category_lens = Variable(torch.LongTensor(category_lens)).cuda()
retrive_lens = Variable(torch.LongTensor(retrive_lens)).cuda()
retrive2_lens = Variable(torch.LongTensor(retrive2_lens)).cuda()
retrieve_category_lens = Variable(torch.LongTensor(retrieve_category_lens)).cuda()
outputs_category, hidden_n_category = encoder(category, category_lens.data.tolist())
outputs_retrieve_category, hidden_n_retrieve_category = encoder(retrieve_category_seqs,
retrieve_category_lens.data.tolist())
outputs_retrive, hidden_retrive = encoder(retrive, retrive_lens.data.tolist())
outputs_retrive2 = retrive2
outputs, hidden_n = encoder(src, src_lens.data.tolist())
ml_loss = infer_one_batch_ml(hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens)
rl_loss, reward = infer_one_batch_rl(hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens)
if use_reinforcement_loss:
loss = 0.8 * ml_loss + 0.2 * rl_loss
else:
loss = ml_loss
epoch_loss += loss.item()
epoch_rl_loss += rl_loss.item()
index = index + 1
decode_list, ndcg__, recall__, ap__, pre__ = decode_greedy(hidden_n, outputs, outputs_category, src_lens,
category_lens, tgt, tgt_lens, hidden_retrive,
outputs_retrive, retrive_lens, outputs_retrive2,
retrive2_lens, outputs_retrieve_category,
retrieve_category_lens, tgt_apis, mashup_names)
all_mashup_services = train_dataset.translate(np.array(decode_list).transpose(1, 0).tolist())
for idx, apis in enumerate(tgt_apis):
if mashup_names[idx] in ['soundpushr', 'explore-travellr', 'gregs-alerts']:
tgt_set = set(tgt_apis[idx])
gen_set = set(all_mashup_services[idx])
results = tgt_set.intersection(gen_set)
print(mashup_names[idx])
print(tgt_apis[idx])
print(all_mashup_services[idx])
#if one_mashup == 'shahi':
#
ndcg_r += ndcg__
recall_r += recall__
ap_r += ap__
pre_r += pre__
ndcg_, recall_, ap_, pre_ = metric(tgt.permute(1, 0)[:, 1:].cpu().numpy(),
np.array(decode_list).transpose(1, 0),
top_k_list)
ndcg_g += ndcg_
recall_g += recall_
ap_g += ap_
pre_g += pre_
# 更新信息
loop.set_description(f'Ttest Epoch [{epoch}/{num_epoch}]')
loop.set_postfix({'loss': epoch_loss / index, 'recall': recall_g / index})
info = 'ApiLoss:' \
'NDCG_G:%s\n' \
'AP_G:%s\n' \
'Pre_G:%s\n' \
'Recall_G:%s\n' \
% (
(ndcg_g / index).round(6), (ap_g / index).round(6),
(pre_g / index).round(6),
(recall_g / index).round(6))
print(info)
info = 'ApiLoss:' \
'NDCG_R:%s\n' \
'AP_R:%s\n' \
'Pre_R:%s\n' \
'Recall_R:%s\n' \
% (
(ndcg_r / index).round(6), (ap_r / index).round(6),
(pre_r / index).round(6),
(recall_r / index).round(6))
print(info)
Valid_Loss_list.append(epoch_loss / index)
def train():
for epoch in range(epochs):
encoder.train()
decoder.train()
epoch_loss = 0
epoch_rl_loss = 0
epoch_ml_loss = 0
index = 0
with tqdm(enumerate(train_iter), total=len(train_iter)) as loop:
max_len = 10
for batch_id, batch_data in loop:
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
src = batch_data[2].cuda()
tgt = batch_data[3].cuda()
src_lens = batch_data[4]
tgt_lens = batch_data[5]
category = batch_data[7].cuda()
category_lens = batch_data[9]
retrive = batch_data[11].cuda()
retrive_lens = batch_data[12]
retrive2 = batch_data[14]
retrive2_lens = batch_data[15]
src_lens = Variable(torch.LongTensor(src_lens)).cuda()
tgt_lens = Variable(torch.LongTensor(tgt_lens)).cuda()
category_lens = Variable(torch.LongTensor(category_lens)).cuda()
retrive_lens = Variable(torch.LongTensor(retrive_lens)).cuda()
retrive2_lens = Variable(torch.LongTensor(retrive2_lens)).cuda()
outputs_category, hidden_n_category = encoder(category, category_lens.data.tolist())
outputs_retrive, hidden_n = encoder(retrive, retrive_lens.data.tolist())
outputs, hidden_n = encoder(src, src_lens.data.tolist())
ml_loss = infer_one_batch_ml(hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens)
rl_loss, reward = infer_one_batch_rl(hidden_n, outputs, outputs_category, src_lens, category_lens, tgt, tgt_lens)
if use_reinforcement_loss:
loss = 0.8 * ml_loss + 0.2 * rl_loss
else:
loss = ml_loss
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
epoch_loss += loss.item()
epoch_rl_loss += rl_loss.item()
epoch_ml_loss += ml_loss.item()
index = index + 1
# 更新信息
loop.set_description(
f'Train Epoch [{epoch}/{epochs}] rl {epoch_rl_loss / index} ml {epoch_ml_loss / index}')
loop.set_postfix(loss=epoch_loss / index)
# lr_scheduler_encoder.step()
# lr_scheduler_decoder.step()
print("第%d个epoch的学习率:%f" % (epoch, encoder_optimizer.param_groups[0]['lr']))
Train_Loss_list.append(epoch_loss / index)
test(epoch, epochs)
sumary(encoder)
sumary(decoder)
train()