-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAES_sim.vhd
162 lines (136 loc) · 4.04 KB
/
AES_sim.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.keyExpansion_package.all;
use work.MixColumns_package.all;
use work.ShiftRows_package.all;
use work.SubBytes_package.all;
use work.inv_MixColumns_package.all;
use work.inv_ShiftRows_package.all;
use work.inv_SubBytes_package.all;
entity AES_sim is
-- port (
-- i_clock : in std_logic;
-- i_op : in std_logic_vector (1 downto 0);
-- i_key : in std_logic_vector (127 downto 0);
-- i_data : in std_logic_vector (127 downto 0);
-- i_start : in std_logic;
-- o_data : out std_logic_vector (127 downto 0);
-- o_done : out std_logic;
-- o_active :out std_logic
-- ) ;
end AES_sim;
architecture arch of AES_sim is
signal i_clock : std_logic:='0';
signal i_op : std_logic_vector (1 downto 0) := "10";
signal i_key : std_logic_vector (127 downto 0) := x"000102030405060708090a0b0c0d0e0f";
signal i_data : std_logic_vector (127 downto 0) := x"69c4e0d86a7b0430d8cdb78070b4c55a"; --cipher
--signal i_data : std_logic_vector (127 downto 0) := x"00112233445566778899aabbccddeeff"; --plaintext
signal i_start : std_logic;
signal o_data : std_logic_vector (127 downto 0);
signal o_done : std_logic;
signal o_active : std_logic;
subtype data128_t is std_logic_vector (127 downto 0);
type operation_t is (idle, key_expansion, enc, dec, clean_up);
signal operation : operation_t := idle;
type step_t is (init, for_loop, finale);
signal step : step_t := init;
signal iteration : integer range 0 to 15 := 0;
type key_array_t is array (0 to 10) of data128_t;
signal key_array : key_array_t;
signal r_state : data128_t;
begin
i_clock <= not i_clock after 10 ns;
aes_p : process( i_clock )
variable state : data128_t;
begin
if(rising_edge(i_clock))then
case (operation) is
when idle =>
o_done <= '0';
o_active <= '0';
if(i_start = '1')then
o_active <= '1';
operation <= key_expansion;
key_array(0) <= i_key;
end if;
when key_expansion =>
if (iteration <= 9) then
key_array(iteration+1) <= nextKey(key_array(iteration), iteration);
iteration <= iteration + 1;
else
iteration <= 1;
case( i_op ) is
when "01" => operation <= enc;
when "10" => operation <= dec;
when others => operation <= idle;
end case ;
end if ;
when enc =>
case( step ) is
when init =>
state := i_data xor key_array(0);
step <= for_loop;
iteration <= 1;
when for_loop =>
state := subBytes(state);
state := shiftRows(state);
state := mixColumns(state);
state := key_array(iteration) xor state;
if(iteration = 9)then
step <= finale;
else
iteration <= iteration + 1;
end if;
when finale =>
state := subBytes(state);
state := shiftRows(state);
state := key_array(iteration+1) xor state;
o_data <= state;
operation <= clean_up;
end case; --step
when dec =>
case( step ) is
when init =>
state := i_data xor key_array(10);
step <= for_loop;
iteration <= 9;
when for_loop =>
state := inv_ShiftRows(state);
state := inv_SubBytes(state);
state := key_array(iteration) xor state;
state := inv_mixColumns(state);
if(iteration = 1)then
step <= finale;
else
iteration <= iteration - 1;
end if;
when finale =>
state := inv_ShiftRows(state);
state := inv_SubBytes(state);
state := key_array(iteration-1) xor state;
o_data <= state;
operation <= clean_up;
end case; --step
when clean_up =>
o_done <= '1';
iteration <= 0;
step <= init;
operation <= idle;
end case ;--operation
r_state <= state;
end if;
end process ; -- aes_p
stop_p : process
begin
wait until rising_edge(i_clock);
wait until rising_edge(i_clock);
wait until rising_edge(i_clock);
i_start <= '1';
wait until rising_edge(i_clock);
i_start <= '0';
wait for 1000 ns;
report "END" severity failure;
end process ; -- stop_p
end arch;