-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModelToNetCDF.m
387 lines (348 loc) · 18 KB
/
ModelToNetCDF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
function results = ModelToNetCDF(md, varargin)
%Create netcdf files for an experiment
%Check inputs {{{
if nargout>1
help runme
error('runme error message: bad usage');
end
%recover options
options=pairoptions(varargin{:});
% }}}
%GET directoryname : './/', directory where the outputs are placed {{{
directoryname = getfieldvalue(options,'directoryname','.//');
if exist(directoryname)~=7,
disp(['directory ' directoryname ' does not exist']);
mkdir(directoryname);
end
% }}}
%GET EXP : 1, EXP1-EXP4 are currently supported{{{
expnum = getfieldvalue(options,'EXP', 1);
expstr = ['EXP', num2str(expnum)];
% }}}
%GET modelname : 'ISSM' {{{
modelname = getfieldvalue(options,'modelname', 'ISSM');
% }}}
%GET flowequation : 'SSA' {{{
flowequation = getfieldvalue(options, 'flowequation', 'SSA');
% }}}
%GET institution : 'Dartmouth' {{{
institution = getfieldvalue(options, 'institution', 'Dartmouth');
% }}}
%GET author : '' {{{
author = getfieldvalue(options, 'author', '');
% }}}
%Field variables {{{
disp(['loading field variables..']);
if strcmp(expstr,'EXP1') | strcmp(expstr,'EXP3')
results.Time1 = [0]; % Time1
results.timegrid=[0];
elseif strcmp(expstr,'EXP2') | strcmp(expstr,'EXP4')
results.Time1 = [0:1:1000]; % Time1
results.timegrid = [0:100:1000]; % Time100
end
xmin=-800000; xmax=800000; dx=5000;
ymin=-800000; ymax=800000; dy=5000;
results.gridx = xmin:dx:xmax;
results.gridy = ymin:dy:ymax;
sizex = numel(results.gridx);
sizey = numel(results.gridy);
% allocate matrices
results.vxmean = nan(sizex,sizey,length(results.timegrid)); %y,x,time
results.vymean = nan(sizex,sizey,length(results.timegrid)); %y,x,time
results.thickness= nan(sizex,sizey,length(results.timegrid)); %y,x,time
results.mask = nan(sizex,sizey,length(results.timegrid)); %y,x,time
results.base = nan(sizex,sizey,length(results.timegrid)); %y,x,time
results.icemask = nan(sizex,sizey,length(results.timegrid)); %y,x,time
results.oceanmask = nan(sizex,sizey,length(results.timegrid)); %y,x,time
% get the model solution into a matrix
x = md.mesh.x;
y = md.mesh.y;
index = md.mesh.elements;
if strcmp(expstr,'EXP1') | strcmp(expstr,'EXP3')
time = 0;
vx = md.results.TransientSolution(end).Vx;
vy = md.results.TransientSolution(end).Vy;
thickness = md.results.TransientSolution(end).Thickness;
base = md.results.TransientSolution(end).Base;
icemask = md.results.TransientSolution(end).MaskIceLevelset;
oceanmask = md.results.TransientSolution(end).MaskOceanLevelset;
elseif strcmp(expstr,'EXP2') | strcmp(expstr,'EXP4')
mdT = [md.results.TransientSolution(:).time];
% find the indices in model results correspond to results.Time1
[~, indd] = find(mdT==results.Time1');
% take all the request time points
time = [0, md.results.TransientSolution(indd).time]; % time start at 0, add initial conditions at the beginning
vx = [[md.initialization.vx], md.results.TransientSolution(indd).Vx];
vy = [[md.initialization.vy], md.results.TransientSolution(indd).Vy];
thickness = [[md.geometry.thickness], md.results.TransientSolution(indd).Thickness];
base = [[md.geometry.base], md.results.TransientSolution(indd).Base];
icemask = [[md.mask.ice_levelset], md.results.TransientSolution(indd).MaskIceLevelset];
oceanmask = [[md.mask.ocean_levelset], md.results.TransientSolution(indd).MaskOceanLevelset];
end
% save the no mask results, for calving front data process
vx_nomask = vx;
vy_nomask = vy;
thickness_nomask = thickness;
% set vel/thk in the open ocean to NaN
vx(icemask>0) = NaN;
vy(icemask>0) = NaN;
thickness(icemask>0) = NaN;
base(icemask>0) = NaN;
% get these data on the time100 grid
for i = 1:length(results.timegrid)
if strcmp(expstr,'EXP1') | strcmp(expstr,'EXP3')
tid = 1;
elseif strcmp(expstr,'EXP2') | strcmp(expstr,'EXP4')
[~,tid] = min(abs( results.Time1((i-1)*100+1)-time));
end
results.vxmean(:, :, i) = transpose(InterpFromMeshToGrid(index, x, y, vx(:, tid), results.gridx, results.gridy, NaN));
results.vymean(:, :, i) = transpose(InterpFromMeshToGrid(index, x, y, vy(:, tid), results.gridx, results.gridy, NaN));
results.thickness(:, :, i) = transpose(InterpFromMeshToGrid(index, x, y, thickness(:, tid), results.gridx, results.gridy, NaN));
results.base(:, :, i) = transpose(InterpFromMeshToGrid(index, x, y, base(:, tid), results.gridx, results.gridy, NaN));
results.icemask(:, :, i) = transpose(InterpFromMeshToGrid(index, x, y, icemask(:, tid), results.gridx, results.gridy, NaN));
results.oceanmask(:, :, i) = transpose(InterpFromMeshToGrid(index, x, y, oceanmask(:, tid), results.gridx, results.gridy, NaN));
end
% mask: grounded=1, floating=2, open ocean=3
mask = results.icemask;
mask(results.icemask<0) = 1; % grounded and floating
mask(results.icemask>0) = 3; % open ocean
mask((results.oceanmask<0) & (results.icemask<0)) = 2;
results.mask = convertLevelsetsToCalvingMIPMask(results.icemask, results.oceanmask);
% bed is static
results.bed = transpose(InterpFromMeshToGrid(index, x, y, md.geometry.bed, results.gridx, results.gridy, NaN));
% Total area of grounded and floating ice in the four quadrants
results.areafourquad = computeFourQuadrantIceArea(md, icemask);
%}}}
%Scalar variables %{{{
disp(['computing scalar variables..']);
if strcmp(expstr,'EXP1') | strcmp(expstr,'EXP3')
results.groundedarea = md.results.TransientSolution(end).GroundedArea; % m^2
results.floatingarea = md.results.TransientSolution(end).FloatingArea; % m^2
results.mass = md.results.TransientSolution(end).IceVolume*md.materials.rho_ice; % kg
results.massaf = md.results.TransientSolution(end).IceVolumeAboveFloatation*md.materials.rho_ice; % kg
results.totalflux_calving = md.results.TransientSolution(end).IcefrontMassFluxLevelset*10^12; % Gt/yr -> kg/yr
results.totalflux_groundingline = md.results.TransientSolution(end).GroundinglineMassFlux*10^12; %Gt/yr -> kg/yr
elseif strcmp(expstr,'EXP2') | strcmp(expstr,'EXP4')
% add initial values of these quantities from EXP3
results.groundedarea = [md.results.InitialSolution.GroundedArea, md.results.TransientSolution(indd).GroundedArea]; % m^2
results.floatingarea = [md.results.InitialSolution.FloatingArea, md.results.TransientSolution(indd).FloatingArea]; % m^2
results.mass = [md.results.InitialSolution.IceVolume, md.results.TransientSolution(indd).IceVolume]*md.materials.rho_ice; % kg
results.massaf = [md.results.InitialSolution.IceVolumeAboveFloatation, md.results.TransientSolution(indd).IceVolumeAboveFloatation]*md.materials.rho_ice; % kg
results.totalflux_calving = [md.results.InitialSolution.IcefrontMassFluxLevelset, md.results.TransientSolution(indd).IcefrontMassFluxLevelset]*10^12; % Gt/yr -> kg/yr
results.totalflux_groundingline = [md.results.InitialSolution.GroundinglineMassFlux, md.results.TransientSolution(indd).GroundinglineMassFlux]*10^12; %Gt/yr -> kg/yr
else
error('not implemented yet');
end
%}}}
%Profile variables {{{
disp(['loading profile variables..']);
if strcmp(expstr,'EXP3') | strcmp(expstr,'EXP4')
nameList = {'A', 'B', 'C', 'D'};
prfList = {'Caprona', 'Halbrane'};
for ip = 1:numel(prfList)
% loof through Caprona and Halbrane
P = readtable(['./Profiles/', prfList{ip}, '_Profiles.csv']);
Pc = readtable(['./Profiles/finer/', prfList{ip}, '_Profiles.csv']);
suffixname = [prfList{ip}, '_'];
disp([' Projecting solutions onto ' suffixname, ' profiles'])
for i = 1:numel(nameList)
pfx = P.([suffixname, 'Profile_', nameList{i}, '_X']);
pfy = P.([suffixname, 'Profile_', nameList{i}, '_Y']);
% use a temporary profile variable to hold all the info
pf = [];
% distance from the start
pf.distance = P.([suffixname, 'Profile_', nameList{i}, '_S']);
% project ice thickness, icemask, vx and vy
pf.thickness = InterpFromMeshToMesh2d(index, x, y, thickness, pfx, pfy);
pf.vx = InterpFromMeshToMesh2d(index, x, y, vx, pfx, pfy);
pf.vy = InterpFromMeshToMesh2d(index, x, y, vy, pfx, pfy);
pf.icemask = InterpFromMeshToMesh2d(index, x, y, icemask, pfx, pfy);
pf.oceanmask = InterpFromMeshToMesh2d(index, x, y, oceanmask, pfx, pfy);
pf.mask = convertLevelsetsToCalvingMIPMask(pf.icemask, pf.oceanmask);
% get front
pfc = [];
pfc.distance = Pc.([suffixname, 'Profile_', nameList{i}, '_S']);
pfc.x = Pc.([suffixname, 'Profile_', nameList{i}, '_X']);
pfc.y = Pc.([suffixname, 'Profile_', nameList{i}, '_Y']);
pfc.thickness = InterpFromMeshToMesh2d(index, x, y, thickness, pfc.x, pfc.y);
pfc.vx = InterpFromMeshToMesh2d(index, x, y, vx, pfc.x, pfc.y);
pfc.vy = InterpFromMeshToMesh2d(index, x, y, vy, pfc.x, pfc.y);
pfc.icemask = InterpFromMeshToMesh2d(index, x, y, icemask, pfc.x, pfc.y);
pf.front = getFrontFromProfiles_extrap(pfc);
results.profiles.([suffixname, nameList{i}]) = pf;
end
end
else
error('not implemented yet');
end
%}}}
%Create netCDF{{{
ExpName=[directoryname '/CalvingMIP_' expstr '_' modelname '_' flowequation '_' institution '.nc'];
disp(['Create netCDF files for the ', expstr, ' at ', ExpName])
% Delete old file
if exist(ExpName,'file') == 2
delete(ExpName);
end
% Time{{{
if strcmp(expstr,'EXP1') | strcmp(expstr,'EXP3')
timeStr = 'Time';
timeExtraStr = 'Time';
elseif strcmp(expstr,'EXP2') | strcmp(expstr,'EXP4')
timeStr = 'Time1';
timeExtraStr = 'Time100';
% additional variable
nccreate(ExpName, timeStr,'Dimensions',{timeStr numel(results.Time1)})
ncwrite(ExpName,timeStr,results.Time1)
ncwriteatt(ExpName, timeStr,'units','a');
end
nccreate(ExpName, timeExtraStr, 'Dimensions', {timeExtraStr, numel(results.timegrid)})
ncwrite(ExpName, timeExtraStr, results.timegrid)
ncwriteatt(ExpName, timeExtraStr,'units','a');
%}}}
% Spatial dimensions {{{
nccreate(ExpName, 'X', 'Dimensions', {'X' 321})
nccreate(ExpName, 'Y', 'Dimensions', {'Y' 321})
ncwrite(ExpName, 'X', results.gridx)
ncwrite(ExpName, 'Y', results.gridy)
ncwriteatt(ExpName,'X','units','m')
ncwriteatt(ExpName,'Y','units','m')
%}}}
% Fields: velocity, thickness, masks{{{
nccreate(ExpName,'xvelmean','Dimensions',{'X' 321 'Y' 321 timeExtraStr numel(results.timegrid)},'FillValue',nan)
nccreate(ExpName,'yvelmean','Dimensions',{'X' 321 'Y' 321 timeExtraStr numel(results.timegrid)},'FillValue',nan)
nccreate(ExpName,'lithk','Dimensions',{'X' 321 'Y' 321 timeExtraStr numel(results.timegrid)},'FillValue',nan)
nccreate(ExpName,'mask','Dimensions',{'X' 321 'Y' 321 timeExtraStr numel(results.timegrid)})
nccreate(ExpName,'topg','Dimensions',{'X' 321 'Y' 321})
ncwrite(ExpName, 'xvelmean', results.vxmean)
ncwrite(ExpName, 'yvelmean', results.vymean)
ncwrite(ExpName, 'lithk', results.thickness)
ncwrite(ExpName, 'mask', results.mask)
ncwrite(ExpName, 'topg', results.bed)
ncwriteatt(ExpName,'xvelmean','units','m/a')
ncwriteatt(ExpName,'yvelmean','units','m/a')
ncwriteatt(ExpName,'lithk','units','m');
ncwriteatt(ExpName,'mask','flag_values','1, 2, 3');
ncwriteatt(ExpName,'topg','units','m');
ncwriteatt(ExpName,'xvelmean','Standard_name','land_ice_vertical_mean_x_velocity')
ncwriteatt(ExpName,'yvelmean','Standard_name','land_ice_vertical_mean_y_velocity')
ncwriteatt(ExpName,'lithk','Standard_name','land_ice_thickness');
ncwriteatt(ExpName,'mask','flag_meanings','1=grounded ice, 2=floating ice, 3=open ocean');
ncwriteatt(ExpName,'topg','Standard_name','bedrock_altitude');
%}}}
% Scalar variables {{{
nccreate(ExpName,'iareafl', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'iareagr', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'lim', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'limnsw', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'tendlicalvf', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'tendligroundf','Dimensions',{timeStr numel(results.Time1)})
ncwrite(ExpName,'iareafl',results.floatingarea)
ncwrite(ExpName,'iareagr',results.groundedarea)
ncwrite(ExpName,'lim',results.mass)
ncwrite(ExpName,'limnsw',results.massaf)
ncwrite(ExpName,'tendlicalvf',results.totalflux_calving)
ncwrite(ExpName,'tendligroundf', results.totalflux_groundingline)
ncwriteatt(ExpName,'iareafl','units','m^2')
ncwriteatt(ExpName,'iareagr','units','m^2')
ncwriteatt(ExpName,'lim','units','kg')
ncwriteatt(ExpName,'limnsw','units','kg')
ncwriteatt(ExpName,'tendlicalvf','units','kg/a');
ncwriteatt(ExpName,'tendligroundf','units','kg/a');
ncwriteatt(ExpName,'iareafl','Standard_name','grounded_ice_sheet_area')
ncwriteatt(ExpName,'iareagr','Standard_name','floating_ice_shelf_area')
ncwriteatt(ExpName,'lim','Standard_name','land_ice_mass')
ncwriteatt(ExpName,'limnsw','Standard_name','land_ice_mass_not_displacing_sea_water')
ncwriteatt(ExpName,'tendlicalvf','Standard_name','tendency_of_land_ice_mass_due_to_calving');
ncwriteatt(ExpName,'tendligroundf','Standard_name','tendency_of_grounded_ice_mass');
%}}}
% Four quadrant variables {{{
nccreate(ExpName,'iareatotalNW', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'iareatotalNE', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'iareatotalSW', 'Dimensions',{timeStr numel(results.Time1)})
nccreate(ExpName,'iareatotalSE', 'Dimensions',{timeStr numel(results.Time1)})
ncwrite(ExpName,'iareatotalNW',results.areafourquad(2,:))
ncwrite(ExpName,'iareatotalNE',results.areafourquad(1,:))
ncwrite(ExpName,'iareatotalSW',results.areafourquad(3,:))
ncwrite(ExpName,'iareatotalSE',results.areafourquad(4,:))
ncwriteatt(ExpName,'iareatotalNW','units','m^2')
ncwriteatt(ExpName,'iareatotalNE','units','m^2')
ncwriteatt(ExpName,'iareatotalSW','units','m^2')
ncwriteatt(ExpName,'iareatotalSE','units','m^2')
ncwriteatt(ExpName,'iareatotalNW','Standard_name','total_ice_area_NorthWest')
ncwriteatt(ExpName,'iareatotalNE','Standard_name','total_ice_area_NorthEast')
ncwriteatt(ExpName,'iareatotalSW','Standard_name','total_ice_area_SouthWest')
ncwriteatt(ExpName,'iareatotalSE','Standard_name','total_ice_area_SouthEast')
%}}}
% Profiles {{{
if strcmp(expstr,'EXP3') | strcmp(expstr,'EXP4')
fullPre = {'Caprona', 'Halbrane'}; % prefix of the full profile name
shortPre = {'Cap', 'Hal'}; % prefix of the short profile name
else
error('Not implemented')
end
for p = 1:numel(fullPre)
for i = 1:numel(nameList)
% Profiles
pf = results.profiles.([fullPre{p}, '_', nameList{i}]);
% short and long names for the netCDF file
sN = [shortPre{p}, nameList{i}];
fN = [fullPre{p}, ' ', nameList{i}];
% write varibles to nc files
if strcmp(expstr,'EXP1') | strcmp(expstr,'EXP3')
% no time dimension for Exp1 and EXP3
nccreate(ExpName, ['lithk', sN], 'Dimensions', {fN numel(pf.distance)});
nccreate(ExpName, ['s', sN],'Dimensions',{fN numel(pf.distance)});
nccreate(ExpName, ['xvelmean', sN], 'Dimensions', {fN numel(pf.distance)}, 'FillValue', nan);
nccreate(ExpName, ['yvelmean', sN], 'Dimensions', {fN numel(pf.distance)}, 'FillValue', nan);
nccreate(ExpName, ['mask', sN], 'Dimensions', {fN numel(pf.distance)});
elseif strcmp(expstr,'EXP2') | strcmp(expstr,'EXP4')
% add time dimension to Exp2 and EXP4
nccreate(ExpName, ['lithk', sN], 'Dimensions', {fN numel(pf.distance) timeStr numel(results.Time1)} );
nccreate(ExpName, ['s', sN],'Dimensions',{fN numel(pf.distance) timeStr numel(results.Time1)});
nccreate(ExpName, ['xvelmean', sN], 'Dimensions', {fN numel(pf.distance) timeStr numel(results.Time1)}, 'FillValue', nan);
nccreate(ExpName, ['yvelmean', sN], 'Dimensions',{ fN numel(pf.distance) timeStr numel(results.Time1)}, 'FillValue', nan);
nccreate(ExpName, ['mask', sN], 'Dimensions', {fN numel(pf.distance) timeStr numel(results.Time1)});
else
error('Not implemented')
end
ncwrite(ExpName, ['lithk', sN], pf.thickness)
ncwrite(ExpName, ['s', sN], pf.distance)
ncwrite(ExpName, ['xvelmean', sN], pf.vx)
ncwrite(ExpName, ['yvelmean', sN], pf.vy)
ncwrite(ExpName, ['mask', sN], pf.mask)
ncwriteatt(ExpName, ['lithk', sN], 'units','m');
ncwriteatt(ExpName, ['s', sN], 'units', 'm');
ncwriteatt(ExpName, ['xvelmean' sN], 'units', 'm/a');
ncwriteatt(ExpName, ['yvelmean' sN], 'units', 'm/a');
ncwriteatt(ExpName, ['mask', sN], 'flag_values', '1, 2, 3');
ncwriteatt(ExpName, ['lithk', sN], 'Standard_name',['land_ice_thickness_along_', fN]);
ncwriteatt(ExpName, ['s', sN], 'Standard_name', ['distance_along_', fN]);
ncwriteatt(ExpName, ['xvelmean', sN], 'Standard_name', ['land_ice_vertical_mean_x_velocity_along_', fN]);
ncwriteatt(ExpName, ['yvelmean', sN], 'Standard_name', ['land_ice_vertical_mean_y_velocity_along_', fN]);
ncwriteatt(ExpName, ['mask', sN], 'flag_meanings', '1=grounded ice, 2=floating ice, 3=open ocean');
% add Calving front data
nccreate(ExpName, ['xcf', sN], 'Dimensions', {timeStr numel(results.Time1)})
nccreate(ExpName, ['ycf', sN], 'Dimensions', {timeStr numel(results.Time1)})
nccreate(ExpName, ['xvelmeancf', sN], 'Dimensions', {timeStr numel(results.Time1)})
nccreate(ExpName, ['yvelmeancf', sN], 'Dimensions', {timeStr numel(results.Time1)})
nccreate(ExpName, ['lithkcf', sN], 'Dimensions', {timeStr numel(results.Time1)})
ncwrite(ExpName, ['xcf', sN], pf.front.x)
ncwrite(ExpName, ['ycf', sN], pf.front.y)
ncwrite(ExpName, ['xvelmeancf', sN], pf.front.vx)
ncwrite(ExpName, ['yvelmeancf', sN], pf.front.vy)
ncwrite(ExpName, ['lithkcf', sN], pf.front.thickness)
ncwriteatt(ExpName, ['xcf', sN], 'units', 'm')
ncwriteatt(ExpName, ['ycf', sN], 'units', 'm')
ncwriteatt(ExpName, ['xvelmeancf', sN], 'units', 'm/a')
ncwriteatt(ExpName, ['yvelmeancf', sN], 'units', 'm/a')
ncwriteatt(ExpName, ['lithkcf', sN], 'units', 'm')
ncwriteatt(ExpName, ['xcf', sN], 'Standard_name', ['x_calving_front_on_', fN])
ncwriteatt(ExpName, ['ycf', sN], 'Standard_name', ['y_calving_front_on_', fN])
ncwriteatt(ExpName, ['xvelmeancf', sN], 'Standard_name', ['land_ice_vertical_mean_x_velocity_at_calving_front_on_', fN])
ncwriteatt(ExpName, ['yvelmeancf', sN], 'Standard_name', ['land_ice_vertical_mean_y_velocity_at_calving_front_on_', fN])
ncwriteatt(ExpName, ['lithkcf', sN], 'Standard_name', ['land_ice_thickness_at_calving_front_on_', fN])
end
end
%}}}
ncdisp(ExpName)
%}}}