-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.yaml
377 lines (364 loc) · 5.87 KB
/
params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
create_folds:
seed: 42
n_folds: 5
train_zero:
name: zero
seed: 5899
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
# model
arch: swin_large_patch4_window12_384
pretrained: true
epochs: 6
bs: 16
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 2
magn: 3
sz: 384
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
lr: 0.00001
warmup_epochs: 1
auto_lr: false
mom: 0.9
remove_hardest_samples:
pct_to_keep: 0.9
train_one:
name: one
seed: 9393
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
# model
arch: swin_large_patch4_window12_384
pretrained: true
epochs: 6
bs: 16
auto_batch_size: false
accumulate_grad_batches: 1
precision: 16
# augmentations
use_normalize: true
n_tfms: 2
magn: 3
sz: 384
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
lr: 0.00003
warmup_epochs: 1
auto_lr: false
mom: 0.9
train_two:
name: two
seed: 7591
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
# model
arch: swin_large_patch4_window7_224
pretrained: true
epochs: 6
bs: 64
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 1
magn: 5
sz: 224
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
warmup_epochs: 1
lr: 0.00005
auto_lr: false
mom: 0.9
train_three:
name: three
seed: 9102
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
# model
arch: xcit_large_24_p8_224_dist
pretrained: true
epochs: 6
bs: 16
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 1
magn: 5
sz: 224
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
warmup_epochs: 1
lr: 0.00003
auto_lr: false
mom: 0.9
train_four:
name: four
seed: 1230
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
# model
arch: cait_s24_224
pretrained: true
epochs: 6
bs: 128
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 1
magn: 5
sz: 224
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
warmup_epochs: 1
lr: 0.0001
auto_lr: false
mom: 0.9
ensemble:
name: ensemble
seed: 1616
models: [one, two, three, four]
n_folds: 5
pseudo_labeling:
models: [one, two, three, four]
n_folds: 5
train_one_extra2:
name: one_extra2
seed: 6921
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
use_extra_images: 2
# model
arch: swin_large_patch4_window12_384
pretrained: true
epochs: 6
bs: 16
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 2
magn: 3
sz: 384
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
lr: 0.000006
warmup_epochs: 1
auto_lr: false
mom: 0.9
train_two_extra2:
name: two_extra2
seed: 7591
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
use_extra_images: 2
# model
arch: swin_large_patch4_window7_224
pretrained: true
epochs: 6
bs: 64
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 1
magn: 5
sz: 224
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
warmup_epochs: 1
lr: 0.00002
auto_lr: false
mom: 0.9
train_three_extra2:
name: three_extra2
seed: 9102
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
use_extra_images: 2
# model
arch: xcit_large_24_p8_224_dist
pretrained: true
epochs: 6
bs: 16
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 1
magn: 5
sz: 224
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
warmup_epochs: 1
lr: 0.00001
auto_lr: false
mom: 0.9
train_four_extra2:
name: four_extra2
seed: 1230
n_folds: 5
fold: -1
# problem
metric: rmse
metric_mode: min
# input images
train_data: data/train
use_extra_images: 2
# model
arch: cait_s24_224
pretrained: true
epochs: 6
bs: 128
auto_batch_size: false
accumulate_grad_batches: 1
precision: bf16
# augmentations
use_normalize: true
n_tfms: 1
magn: 5
sz: 224
use_mix: 0
mix_p: 0.0
resize: -1
# regularization
dropout: 0.0
wd: 0.0
label_smoothing: 0.1
# optimizer
loss: bce_with_logits
opt: adamw
sched: cosine
warmup_epochs: 1
lr: 0.00004
auto_lr: false
mom: 0.9
ensemble_final:
name: ensemble_final
seed: 1010
n_folds: 5
models: [five, one_extra2, three_extra2, four_extra2]