-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune.py
88 lines (67 loc) · 2.59 KB
/
fine_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import hydra
import torch
from omegaconf import open_dict
from torch import nn
from torch import optim as optim
import eval_util
import util
from dataset.data_util import get_datasets, get_meta_dataset
from meta_learner import MetaLS
from models.resfc import ResFC
from models.util import create_model
from routines import parse_option
from train_routine import full_train, get_dataloaders
class moduleWrapper(nn.Module):
def __init__(self, backbone, trans):
super().__init__()
self.backbone = backbone
self.trans = trans
def forward(self, xs):
feat = self.backbone(xs)
feat = eval_util.normalize(feat)
return self.trans(feat)
def train(self, mode=True):
self.trans.train(mode)
return self
@hydra.main(config_path="config", config_name="fine_tune.yaml")
def fine_tune_main(opt):
util.set_up_cudnn()
opt = parse_option(opt)
with open_dict(opt):
opt.model_name = f"{opt.model_name}_fine_tune"
logger = util.get_logger(opt.logger_name, file_name=f"{opt.logger_name}_{opt.model_name}")
logger.info(opt)
train_datasets, n_cls = get_datasets(opt, "train", opt.rotate_aug)
meta_train_dataset = get_meta_dataset(opt, train_datasets)
# NOTE: we only want one dataloader so we just pass a singleton list
meta_trainloader = get_dataloaders([meta_train_dataset], 1, opt.num_workers)[0]
val_datasets, _ = get_datasets(opt, "val", False)
valloaders = get_dataloaders(val_datasets, 256, opt.num_workers, shuffle=False)
save_dicts = torch.load(os.path.join(opt.model_path, opt.pretrained_model))
model_params = save_dicts["model"]
model_params = util.change_param_prefix(model_params, "module", "backbone")
backbone = create_model(opt.model, dataset=opt.dataset)
backbone.eval()
ft_model = ResFC(opt.feat_dim, opt.feat_dim, residual=True, layer_norm=True)
# loading the backbone here, avoiding changing saved parameter names since composite_backbone adds prefix "backbone"
composite_backbone = moduleWrapper(backbone, ft_model)
util.partial_reload(composite_backbone, model_params)
model = MetaLS(composite_backbone, opt, opt.feat_dim, opt.extra_reg)
model = model.cuda()
if opt.rotate_aug:
n_cls *= 4
optimizer = optim.AdamW(ft_model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay)
scheduler = None
full_train(
opt,
model,
meta_trainloader,
valloaders,
optimizer,
scheduler,
logger,
lambda x: x >= 0,
)
if __name__ == "__main__":
fine_tune_main()