-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
274 lines (249 loc) · 12.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#include <cstdlib>
#include <string>
#include "image_quilting.h"
#include "png_reader.h"
#include "blocking.h"
#include "src/advance_alg_optimiz.h"
#include "src/benchmarking/timing.h"
#include "src/comp_overlap_optimiz.h"
#include "testing.h"
// input parameters
std::string input_file = "./gallery/input0.png";
std::string output_file = "./gallery/output0.png";
ImgData img_data;
bool runTiming = false;
bool generate = false;
bool test = false;
bool testCorrectnessAndTiming = false;
bool stabilize = false;
bool advisor = false;
bool timingFunctional = false;
void parse_args(int argc, char* argv[]) {
std::string delimiter = "=";
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
std::string par = arg.substr(0, arg.find(delimiter));
std::string val = arg.substr(arg.find(delimiter) + 1, std::string::npos);
if (par == "--input") {
input_file = "./gallery/" + val;
} else if (par == "--output") {
output_file = "./gallery/" + val;
} else if (par == "--width") {
img_data.output_w = std::stoi(val);
} else if (par == "--height") {
img_data.output_h = std::stoi(val);
} else if (par == "--blockW") {
img_data.block_w = std::stoi(val);
} else if (par == "--blockH") {
img_data.block_h = std::stoi(val);
} else if (par == "--timing") {
runTiming = true;
} else if (par == "--generate") {
generate = true;
} else if (par == "--test") {
test = true;
} else if (par == "--testCorrectnessAndTiming") {
testCorrectnessAndTiming = true;
} else if (par == "--stabilize") {
stabilize = true;
} else if (par == "--advisor") {
advisor = true;
} else if (par == "--timingFunctional") {
timingFunctional = true;
}
}
}
// if invalid or were not set before
void set_default() {
if (img_data.output_w == 0) {
img_data.output_w = img_data.width * 2;
}
if (img_data.output_h == 0) {
img_data.output_h = img_data.height * 2;
}
uint32_t max_block_w = img_data.width / 3;
uint32_t max_block_h = img_data.height / 3;
if (img_data.block_w == 0 || img_data.block_w > max_block_w) {
img_data.block_w = img_data.width / 4;
}
if (img_data.block_h == 0 || img_data.block_h > max_block_h) {
img_data.block_h = img_data.height / 4;
}
}
void test_all_optimizations() {
Testing testing = Testing(2);
testing.RegisterTestFunction(Testing::ImageQuiltingFunction, "default");
testing.RegisterTestFunction(CompOverlapOptimiz::BasicOpt, "basic");
testing.RegisterTestFunction(CompOverlapOptimiz::AlgOpt, "AlgImpr");
testing.RegisterTestFunction(CompOverlapOptimiz::UnrollOpt, "Unroll");
testing.RegisterTestFunction(CompOverlapOptimiz::UnrollMaxOpt, "UnrollMax");
#ifdef __AVX2__
testing.RegisterTestFunction(CompOverlapOptimiz::VectorizeOpt, "Vectorize");
#endif
testing.RegisterTestFunction(CompOverlapOptimiz::UnrollChnls, "unroll channels");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor, "unroll_bounds");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder,
"unroll_bounds_loop");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking32,
"unroll_bounds_loop_block32");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking48,
"unroll_bounds_loop_block48");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking64,
"unroll_bounds_loop_block64");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking96,
"unroll_bounds_loop_block96");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking128,
"unroll_bounds_loop_block128");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KSrc2Unroll_BoundsRefactor_LoopReorder_Blocking32,
"unroll2_bounds_loop_block32");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KSrc4Unroll_BoundsRefactor_LoopReorder_Blocking32,
"unroll4_bounds_loop_block32");
#ifdef __AVX2__
testing.RegisterTestFunction(
AdvanceAlgOptimiz::StdC_KSrc2Unroll_Vector_BoundsRefactor_LoopReorder_Blocking32,
"unroll2_bounds_loop_block32_simd");
testing.RegisterTestFunction(
AdvanceAlgOptimiz::StdC_KSrc4Unroll_Vector_BoundsRefactor_LoopReorder_Blocking32,
"unroll4_bounds_loop_block32_simd");
testing.RegisterTestFunction(
AdvanceAlgOptimiz::StdC_KSrc8Unroll_Vector_BoundsRefactor_LoopReorder_Blocking32,
"unroll8_bounds_loop_block32_simd");
#endif
testing.TestCorrectness();
}
int main(int argc, char* argv[]) {
// Parse the command line arguments
parse_args(argc, argv);
// Benchmarking
if (runTiming) {
timing::run_timing(2);
timing::run_timing(4);
timing::run_timing(8);
}
// Generate output for testing
else if (generate) {
Testing testing = Testing(2);
testing.GenerateOutputFiles();
}
// Test the correctness of our base implementation
else if (test) {
test_all_optimizations();
}
// Test the correctness and timing of the variants of our implementation
else if (testCorrectnessAndTiming) {
Testing testing = Testing(2);
testing.RegisterTestFunction(Testing::ImageQuiltingFunction, "default");
testing.RegisterTestFunction(CompOverlapOptimiz::BasicOpt, "compBasic");
testing.RegisterTestFunction(CompOverlapOptimiz::AlgOpt, "compBasic+AlgImpr");
testing.RegisterTestFunction(CompOverlapOptimiz::UnrollOpt, "compBasic+AlgImpr+Unroll");
testing.RegisterTestFunction(AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor,
"Unroll+DividedFunctions");
testing.RegisterTestFunction(CompOverlapOptimiz::UnrollMaxOpt,
"compBasic+AlgImpr+UnrollTheoreticalMax");
#ifdef __AVX2__
testing.RegisterTestFunction(CompOverlapOptimiz::VectorizeOpt, "compBasic+AlgImpr+Unroll+Vectorize");
#endif
std::cout << std::endl;
testing.TestCorrectnessAndTiming(stabilize);
testing.RegisterComponentTestFunction(CompOverlapOptimiz::BaseComponent,
CompOverlapOptimiz::BaseComponent, "default");
testing.RegisterComponentTestFunction(CompOverlapOptimiz::BaseComponent,
CompOverlapOptimiz::BasicOptComponent, "compBasic");
testing.RegisterComponentTestFunction(CompOverlapOptimiz::BaseComponent,
CompOverlapOptimiz::AlgoOptComponent, "compBasic+AlgImpr");
testing.RegisterComponentTestFunction(CompOverlapOptimiz::BaseComponent,
CompOverlapOptimiz::UnrollOptComponent,
"compBasic+AlgImpr+Unroll");
testing.RegisterComponentTestFunction(CompOverlapOptimiz::BaseComponent,
CompOverlapOptimiz::UnrollMaxOptComponent,
"compBasic+AlgImpr+UnrollTheoreticalMax");
#ifdef __AVX2__
testing.RegisterComponentTestFunction(CompOverlapOptimiz::BaseComponent,
CompOverlapOptimiz::VectorizeOptComponent,
"compBasic+AlgImpr+Unroll+Vectorize");
#endif
std::cout << std::endl;
testing.TestComponentsTiming(stabilize);
}
// Only runs specific functions to give to Intel Advisor
else if (advisor) {
Testing testing = Testing(0);
testing.RegisterTestingComponentAdvisor(CompOverlapOptimiz::BaseComponent, "default");
testing.RegisterTestingComponentAdvisor(CompOverlapOptimiz::BasicOptComponent, "compBasic");
testing.RegisterTestingComponentAdvisor(CompOverlapOptimiz::UnrollOptComponent,
"compBasic+AlgImpr+Unroll");
testing.RegisterTestingComponentAdvisor(CompOverlapOptimiz::UnrollMaxOptComponent,
"compBasic+AlgImpr+UnrollTheoreticalMax");
#ifdef __AVX2__
testing.RegisterTestingComponentAdvisor(CompOverlapOptimiz::VectorizeOptComponent,
"compBasic+AlgImpr+Unroll+Vectorize");
#endif
testing.ComponentsTimingAdvisor();
}
// Run the functional timing code
else if (timingFunctional) {
// Define the set of image quilting functions
std::vector<std::pair<std::string, timing::ImageQuiltingFunction>> imageQuiltingFunctions = {
{"default", Testing::ImageQuiltingFunction},
{"StdC_Algorithm", CompOverlapOptimiz::AlgOpt},
{"StdC_Algorithm_ChannelsUnroll", CompOverlapOptimiz::UnrollChnls},
#ifdef __AVX2__
{"StdC_Algorithm_Vectorize", CompOverlapOptimiz::VectorizeOpt},
#endif
{"StdC_KUnroll_BoundsRefactor", AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor},
// TODO: do we need to test all possible block sizes? Maybe we know that some of them are not beneficial?
{"StdC_KUnroll_BoundsRefactor_LoopReorder",
AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder},
{"StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking32",
AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking32},
{"StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking48",
AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking48},
{"StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking64",
AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking64},
{"StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking96",
AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking96},
{"StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking128",
AdvanceAlgOptimiz::StdC_KUnroll_BoundsRefactor_LoopReorder_Blocking128},
{"StdC_KSrc2Unroll_BoundsRefactor_LoopReorder_Blocking32",
AdvanceAlgOptimiz::StdC_KSrc2Unroll_BoundsRefactor_LoopReorder_Blocking32},
{"StdC_KSrc4Unroll_BoundsRefactor_LoopReorder_Blocking32",
AdvanceAlgOptimiz::StdC_KSrc4Unroll_BoundsRefactor_LoopReorder_Blocking32},
#ifdef __AVX2__
{"StdC_KSrc2Unroll_Vector_BoundsRefactor_LoopReorder_Blocking32",
AdvanceAlgOptimiz::StdC_KSrc2Unroll_Vector_BoundsRefactor_LoopReorder_Blocking32},
{"StdC_KSrc4Unroll_Vector_BoundsRefactor_LoopReorder_Blocking32",
AdvanceAlgOptimiz::StdC_KSrc4Unroll_Vector_BoundsRefactor_LoopReorder_Blocking32},
#endif
};
// Block divisor 2
for (const auto& pair : imageQuiltingFunctions) {
timing::run_timing_functional(pair.first, "./timing/input", "input0", "./timing/results",
pair.second, 2, 2, 0);
}
// Block divisor 4
for (const auto& pair : imageQuiltingFunctions) {
timing::run_timing_functional(pair.first, "./timing/input", "input0", "./timing/results",
pair.second, 2, 4, 0);
}
// Block divisor 8
for (const auto& pair : imageQuiltingFunctions) {
timing::run_timing_functional(pair.first, "./timing/input", "input0", "./timing/results",
pair.second, 2, 8, 0);
}
}
// Main
else {
// Read the input data
file::read_png_file(input_file.c_str(), img_data);
set_default();
// Allocate the output data and run the image quilting algorithm
img_data.AllocateOutput();
ImageQuilting imageQuilting(&img_data);
imageQuilting.Synthesis();
// Write the output file and free the members of img_data
file::write_png_file(output_file.c_str(), img_data);
img_data.FreeOutput();
img_data.FreeInput();
}
return EXIT_SUCCESS;
}