Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes for newer tensorflow version #24

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 6 additions & 7 deletions complexnn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@
from . import bn, conv, dense, init, norm, pool

# from . import fft

from .bn import ComplexBatchNormalization as ComplexBN
from .conv import (
ComplexConv,
Expand All @@ -18,17 +17,17 @@
# from .fft import (fft, ifft, fft2, ifft2, FFT, IFFT, FFT2, IFFT2)
from .init import (
ComplexIndependentFilters,
IndependentFilters,
ComplexInit,
IndependentFilters,
SqrtInit,
)
from .norm import LayerNormalization, ComplexLayerNorm
from .norm import ComplexLayerNorm, LayerNormalization
from .pool import SpectralPooling1D, SpectralPooling2D
from .utils import (
get_realpart,
get_imagpart,
getpart_output_shape,
GetAbs,
GetImag,
GetReal,
GetAbs,
get_imagpart,
get_realpart,
getpart_output_shape,
)
141 changes: 96 additions & 45 deletions complexnn/bn.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,9 @@
# https://github.com/fchollet/keras/blob/master/keras/layers/normalization.py

import numpy as np
from tensorflow.keras.layers import Layer, InputSpec
from tensorflow.keras import initializers, regularizers, constraints
import tensorflow.keras.backend as K
from tensorflow.keras import constraints, initializers, regularizers
from tensorflow.keras.layers import InputSpec, Layer


def sqrt_init(shape, dtype=None):
Expand Down Expand Up @@ -139,7 +139,18 @@ def complex_standardization(input_centred, Vrr, Vii, Vri, layernorm=False, axis=


def ComplexBN(
input_centred, Vrr, Vii, Vri, beta, gamma_rr, gamma_ri, gamma_ii, scale=True, center=True, layernorm=False, axis=-1
input_centred,
Vrr,
Vii,
Vri,
beta,
gamma_rr,
gamma_ri,
gamma_ii,
scale=True,
center=True,
layernorm=False,
axis=-1,
):
"""Complex Batch Normalization

Expand Down Expand Up @@ -176,7 +187,9 @@ def ComplexBN(
broadcast_beta_shape[axis] = input_dim * 2

if scale:
standardized_output = complex_standardization(input_centred, Vrr, Vii, Vri, layernorm, axis=axis)
standardized_output = complex_standardization(
input_centred, Vrr, Vii, Vri, layernorm, axis=axis
)

# Now we perform th scaling and Shifting of the normalized x using
# the scaling parameter
Expand All @@ -194,8 +207,12 @@ def ComplexBN(
broadcast_gamma_ri = K.reshape(gamma_ri, gamma_broadcast_shape)
broadcast_gamma_ii = K.reshape(gamma_ii, gamma_broadcast_shape)

cat_gamma_4_real = K.concatenate([broadcast_gamma_rr, broadcast_gamma_ii], axis=axis)
cat_gamma_4_imag = K.concatenate([broadcast_gamma_ri, broadcast_gamma_ri], axis=axis)
cat_gamma_4_real = K.concatenate(
[broadcast_gamma_rr, broadcast_gamma_ii], axis=axis
)
cat_gamma_4_imag = K.concatenate(
[broadcast_gamma_ri, broadcast_gamma_ri], axis=axis
)
if (axis == 1 and ndim != 3) or ndim == 2:
centred_real = standardized_output[:, :input_dim]
centred_imag = standardized_output[:, input_dim:]
Expand All @@ -214,14 +231,21 @@ def ComplexBN(
" should be either 1 or -1. "
"axis: " + str(axis) + "; ndim: " + str(ndim) + "."
)
rolled_standardized_output = K.concatenate([centred_imag, centred_real], axis=axis)
rolled_standardized_output = K.concatenate(
[centred_imag, centred_real], axis=axis
)
if center:
broadcast_beta = K.reshape(beta, broadcast_beta_shape)
return (
cat_gamma_4_real * standardized_output + cat_gamma_4_imag * rolled_standardized_output + broadcast_beta
cat_gamma_4_real * standardized_output
+ cat_gamma_4_imag * rolled_standardized_output
+ broadcast_beta
)
else:
return cat_gamma_4_real * standardized_output + cat_gamma_4_imag * rolled_standardized_output
return (
cat_gamma_4_real * standardized_output
+ cat_gamma_4_imag * rolled_standardized_output
)
else:
if center:
broadcast_beta = K.reshape(beta, broadcast_beta_shape)
Expand Down Expand Up @@ -294,7 +318,7 @@ def __init__(
beta_constraint=None,
gamma_diag_constraint=None,
gamma_off_constraint=None,
**kwargs
**kwargs,
):
super(ComplexBatchNormalization, self).__init__(**kwargs)
self.supports_masking = True
Expand All @@ -308,7 +332,9 @@ def __init__(
self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer)
self.moving_mean_initializer = sanitizedInitGet(moving_mean_initializer)
self.moving_variance_initializer = sanitizedInitGet(moving_variance_initializer)
self.moving_covariance_initializer = sanitizedInitGet(moving_covariance_initializer)
self.moving_covariance_initializer = sanitizedInitGet(
moving_covariance_initializer
)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer)
self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer)
Expand All @@ -317,7 +343,6 @@ def __init__(
self.gamma_off_constraint = constraints.get(gamma_off_constraint)

def build(self, input_shape):

ndim = len(input_shape)

dim = input_shape[self.axis]
Expand Down Expand Up @@ -354,13 +379,22 @@ def build(self, input_shape):
constraint=self.gamma_off_constraint,
)
self.moving_Vrr = self.add_weight(
shape=param_shape, initializer=self.moving_variance_initializer, name="moving_Vrr", trainable=False
shape=param_shape,
initializer=self.moving_variance_initializer,
name="moving_Vrr",
trainable=False,
)
self.moving_Vii = self.add_weight(
shape=param_shape, initializer=self.moving_variance_initializer, name="moving_Vii", trainable=False
shape=param_shape,
initializer=self.moving_variance_initializer,
name="moving_Vii",
trainable=False,
)
self.moving_Vri = self.add_weight(
shape=param_shape, initializer=self.moving_covariance_initializer, name="moving_Vri", trainable=False
shape=param_shape,
initializer=self.moving_covariance_initializer,
name="moving_Vri",
trainable=False,
)
else:
self.gamma_rr = None
Expand Down Expand Up @@ -443,7 +477,9 @@ def call(self, inputs, training=None):
Vii = None
Vri = None
else:
raise ValueError("Error. Both scale and center in batchnorm are set to False.")
raise ValueError(
"Error. Both scale and center in batchnorm are set to False."
)

input_bn = ComplexBN(
input_centred,
Expand All @@ -460,34 +496,43 @@ def call(self, inputs, training=None):
)
if training in {0, False}:
return input_bn
else:
update_list = []
update_list = []
if self.center:
update_list.append(
K.moving_average_update(self.moving_mean, mu, self.momentum)
)
if self.scale:
update_list.append(
K.moving_average_update(self.moving_Vrr, Vrr, self.momentum)
)
update_list.append(
K.moving_average_update(self.moving_Vii, Vii, self.momentum)
)
update_list.append(
K.moving_average_update(self.moving_Vri, Vri, self.momentum)
)
self.add_update(update_list)

def normalize_inference():
if self.center:
update_list.append(K.moving_average_update(self.moving_mean, mu, self.momentum))
if self.scale:
update_list.append(K.moving_average_update(self.moving_Vrr, Vrr, self.momentum))
update_list.append(K.moving_average_update(self.moving_Vii, Vii, self.momentum))
update_list.append(K.moving_average_update(self.moving_Vri, Vri, self.momentum))
self.add_update(update_list)

def normalize_inference():
if self.center:
inference_centred = inputs - K.reshape(self.moving_mean, broadcast_mu_shape)
else:
inference_centred = inputs
return ComplexBN(
inference_centred,
self.moving_Vrr,
self.moving_Vii,
self.moving_Vri,
self.beta,
self.gamma_rr,
self.gamma_ri,
self.gamma_ii,
self.scale,
self.center,
axis=self.axis,
inference_centred = inputs - K.reshape(
self.moving_mean, broadcast_mu_shape
)
else:
inference_centred = inputs
return ComplexBN(
inference_centred,
self.moving_Vrr,
self.moving_Vii,
self.moving_Vri,
self.beta,
self.gamma_rr,
self.gamma_ri,
self.gamma_ii,
self.scale,
self.center,
axis=self.axis,
)

# Pick the normalized form corresponding to the training phase.
return K.in_train_phase(input_bn, normalize_inference, training=training)
Expand All @@ -503,10 +548,16 @@ def get_config(self):
"gamma_diag_initializer": sanitizedInitSer(self.gamma_diag_initializer),
"gamma_off_initializer": sanitizedInitSer(self.gamma_off_initializer),
"moving_mean_initializer": sanitizedInitSer(self.moving_mean_initializer),
"moving_variance_initializer": sanitizedInitSer(self.moving_variance_initializer),
"moving_covariance_initializer": sanitizedInitSer(self.moving_covariance_initializer),
"moving_variance_initializer": sanitizedInitSer(
self.moving_variance_initializer
),
"moving_covariance_initializer": sanitizedInitSer(
self.moving_covariance_initializer
),
"beta_regularizer": regularizers.serialize(self.beta_regularizer),
"gamma_diag_regularizer": regularizers.serialize(self.gamma_diag_regularizer),
"gamma_diag_regularizer": regularizers.serialize(
self.gamma_diag_regularizer
),
"gamma_off_regularizer": regularizers.serialize(self.gamma_off_regularizer),
"beta_constraint": constraints.serialize(self.beta_constraint),
"gamma_diag_constraint": constraints.serialize(self.gamma_diag_constraint),
Expand Down
Loading