Skip to content

Jesson-Wei/DP_GraphDiffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reproducibility Instructions for "Differentially Private Graph Diffusion with Applications in Personalized PageRanks" Experiments

Authors: Rongzhe Wei, Eli Chien, Pan Li

This repository contains the code and instructions to reproduce the experiments presented in our paper on privacy-preserving graph diffusion framework. Please follow the steps below to set up the environment and run the experiments.

1. Create and Activate the Virtual Environment:

Open your terminal or command prompt and run the following commands to create and activate the virtual environment:

conda create -n private_graph_diffusion python=3.10.4
conda activate private_graph_diffusion

2. Install the Required Packages:

pip install -r requirements.txt

3. Running the Experiments:

The experiments can be executed by running the main.py script. The script supports various configurations through command-line arguments.

Usage:

python main.py --dataset <DATASET> --method <METHOD> [OPTIONS]

Arguments:

`--dataset`: The dataset to use for the experiment. Options are `BlogCatalog`, `Themarker`, `Flickr`.
`--method`: The method to run. Options are `our`, `pushflow`, `edgeflipping`, `all`.
`--epsilon`: The DP privacy budget of graph diffusion (default: 0.1).
`--max_iter`: The propagation iteration for PPR (default: 100).
`--beta`: The teleport probability for PPR (default: 0.8).

Example: To run the experiment using the BlogCatalog dataset with all methods, use the following command:

python main.py --dataset BlogCatalog --method all

Paper Link

📄 Differentially Private Graph Diffusion with Applications in Personalized PageRanks

BibTeX Citation

Cite our paper:

@article{wei2024differentially,
  title={Differentially private graph diffusion with applications in personalized pageranks},
  author={Wei, Rongzhe and Chien, Eli and Li, Pan},
  journal={Advances in Neural Information Processing Systems},
  year={2024}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages