v0.2.0
ParametrisedConvexApproximators v0.2.0
Closed issues:
- Change the package and function names (British to American) (#20)
- Add basic test files (#21)
- Add CI (continuous integration) (#22)
- Add a type for trainer (#24)
- Add data split for "train, validate, test" (#25)
- Add dataset (#29)
- Save model after training (best/last) (#33)
- Add a modified PLSE with zero-gradient function (#36)
- Add more simple functions including "non parameterized convex" ones (#39)
- Add visualization (loss graph) (#40)
- Add data normalization (#41)
- Add DLSE (#42)
- Change how to construct MA and LSE (#47)
- Bug fix of DLSE; not trained (#48)
- Normalized approximator for trainer (#52)
- Dataset save and load (#55)
- Should we replace the sample and training part with Surrogates.jl? (#56)
Merged pull requests:
- Add arXiv (#15) (@JinraeKim)
- Add ci (#23) (@JinraeKim)
- v0.2.0 (#26) (@JinraeKim)
- Add split_data2 and split_data3 (#27) (@JinraeKim)
- Deprecate UnPack (#28) (@JinraeKim)
- Add SimpleDataset (#30) (@JinraeKim)
- Adding supervised learning trainer (#31) (@JinraeKim)
- British to American (#32) (@JinraeKim)
- Update dataset; add an example of save and load network model (#34) (@JinraeKim)
- Add a modified PLSE; strict (#37) (@JinraeKim)
- Add loss graph (#43) (@JinraeKim)
- Add more simple functions (#44) (@JinraeKim)
- Add DLSE (#46) (@JinraeKim)
- Bux fix dlse (#49) (@JinraeKim)
- Change the way how to construct the MA and LSE (#50) (@JinraeKim)
- Add NormalizedApproximator and MaxAbsNormalizedApproximator (#51) (@JinraeKim)
- Better initial guess (#53) (@JinraeKim)
- Normalized network for trainer (#54) (@JinraeKim)
- Update README.md (#57) (@JinraeKim)
- Update Project.toml for compat (#58) (@JinraeKim)