@@ -1589,36 +1589,36 @@ Navigate to [MS Fabric](https://app.fabric.microsoft.com/) and sign in with your
1589
1589
</div><div class=" h3-box" markdown=" 1" >
1590
1590
1591
1591
### Step 2: Create a Lakehouse
1592
- - Go to the **Synapse Data Science** section.
1592
+ - Go to the **Data Science** section.
1593
1593
- Navigate to the **Create** section.
1594
1594
- Create a new lakehouse, (for instance let us name it ` jsl_workspace` .)
1595
1595
1596
- 
1596
+ 
1597
1597
1598
1598
</div><div class=" h3-box" markdown=" 1" >
1599
1599
1600
1600
### Step 3: Create a Notebook
1601
1601
- Similarly, create a new notebook ( for instance let us name it ` JSL_Notebook` .)
1602
1602
1603
- 
1603
+ 
1604
1604
1605
1605
</div><div class=" h3-box" markdown=" 1" >
1606
1606
1607
1607
### Step 4: Attach the Lakehouse
1608
1608
Attach the newly created lakehouse (` jsl_workspace` ) to your notebook.
1609
1609
1610
- 
1610
+ 
1611
1611
1612
- 
1612
+ 
1613
1613
1614
1614
</div><div class=" h3-box" markdown=" 1" >
1615
1615
1616
1616
### Step 5: Upload Files
1617
1617
Upload the necessary ` .jar` and ` .whl` files to the attached lakehouse.
1618
1618
1619
- 
1619
+ 
1620
1620
1621
- 
1621
+ 
1622
1622
1623
1623
After uploading is complete, you can configure and run the notebook.
1624
1624
@@ -1631,21 +1631,30 @@ Configure the session within the notebook as follows:
1631
1631
%%configure -f
1632
1632
{
1633
1633
" conf" : {
1634
- " spark.hadoop.fs.s3a.access.key " : {
1634
+ " spark.jsl.settings.aws.credentials.access_key_id " : {
1635
1635
" parameterName" : " awsAccessKey" ,
1636
- " defaultValue" : " <AWS-ACCESS-KEY >"
1636
+ " defaultValue" : " <AWS_ACCESS_KEY_ID >"
1637
1637
},
1638
- " spark.hadoop.fs.s3a.secret.key " : {
1638
+ " spark.jsl.settings.aws.credentials.secret_access_key " : {
1639
1639
" parameterName" : " awsSecretKey" ,
1640
- " defaultValue" : " <AWS-SECRET-KEY >"
1640
+ " defaultValue" : " <AWS_SECRET_ACCESS_KEY >"
1641
1641
},
1642
+
1642
1643
" spark.yarn.appMasterEnv.SPARK_NLP_LICENSE" : {
1643
1644
" parameterName" : " sparkNlpLicense" ,
1644
- " defaultValue" : " <LICENSE-KEY >"
1645
+ " defaultValue" : " <SPARK_NLP_LICENSE >"
1645
1646
},
1646
1647
" spark.jars" : {
1647
1648
" parameterName" : " sparkJars" ,
1648
- " defaultValue" : " <abfs-path-spark-nlp-assembly-jar>,<abfs-path-spark-nlp-jsl-jar>"
1649
+ " defaultValue" : " abfss://&&&&&&/Files/spark-nlp-assembly-5.5.0.jar, abfss://&&&&&&/Files/spark-nlp-jsl-5.5.0.jar"
1650
+ },
1651
+ " spark.jsl.settings.pretrained.cache_folder" : {
1652
+ " parameterName" : " cacheFolder" ,
1653
+ " defaultValue" : " abfss://&&&&&&/Files/unzip_files"
1654
+ },
1655
+ " spark.extraListeners" : {
1656
+ " parameterName" : " extraListener" ,
1657
+ " defaultvalue" : " com.johnsnowlabs.license.LicenseLifeCycleManager"
1649
1658
}
1650
1659
}
1651
1660
}
@@ -1658,6 +1667,7 @@ Configure the session within the notebook as follows:
1658
1667
1659
1668
Install the required Spark NLP libraries using pip commands:
1660
1669
` ` ` bash
1670
+ %pip install < johnsnowlabs whl File API path>
1661
1671
%pip install < spark-nlp whl File API path>
1662
1672
%pip install < spark-nlp-jsl whl File API path>
1663
1673
` ` `
@@ -1754,4 +1764,9 @@ result = pipeline.annotate(text)
1754
1764
1755
1765

1756
1766
1767
+ ### Step 12: Run the pipeline with ` .pretrained()` method
1768
+ You can also run the pipelines without using the ` .load()` or ` .from_disk()` methods
1769
+
1770
+ 
1771
+ 
1757
1772
</div>
0 commit comments