Skip to content

Commit 38784fb

Browse files
abelsiqueiraJSOTutorials bot
and
JSOTutorials bot
authored
🤖 Tutorials deployment from 92124205294a28562a5dd3ca86f474cc12bf071a (#194)
Co-authored-by: JSOTutorials bot <jsotutorials@no.mail>
1 parent 618d064 commit 38784fb

File tree

1 file changed

+41
-41
lines changed
  • tutorials/introduction-to-optimizationproblems

1 file changed

+41
-41
lines changed

tutorials/introduction-to-optimizationproblems/index.md

Lines changed: 41 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -5,11 +5,11 @@
55
\preamble{Tangi Migot}
66

77

8-
[![NLPModels 0.20.0](https://img.shields.io/badge/NLPModels-0.20.0-8b0000?style=flat-square&labelColor=cb3c33)](https://juliasmoothoptimizers.github.io/NLPModels.jl/stable/)
9-
[![NLPModelsJuMP 0.12.1](https://img.shields.io/badge/NLPModelsJuMP-0.12.1-8b0000?style=flat-square&labelColor=cb3c33)](https://juliasmoothoptimizers.github.io/NLPModelsJuMP.jl/stable/)
10-
[![ADNLPModels 0.7.0](https://img.shields.io/badge/ADNLPModels-0.7.0-8b0000?style=flat-square&labelColor=cb3c33)](https://juliasmoothoptimizers.github.io/ADNLPModels.jl/stable/)
11-
![JuMP 1.12.0](https://img.shields.io/badge/JuMP-1.12.0-000?style=flat-square&labelColor=999)
12-
[![OptimizationProblems 0.7.1](https://img.shields.io/badge/OptimizationProblems-0.7.1-8b0000?style=flat-square&labelColor=cb3c33)](https://juliasmoothoptimizers.github.io/OptimizationProblems.jl/stable/)
8+
[![NLPModels 0.21.3](https://img.shields.io/badge/NLPModels-0.21.3-8b0000?style=flat-square&labelColor=cb3c33)](https://jso.dev/NLPModels.jl/stable/)
9+
[![NLPModelsJuMP 0.13.2](https://img.shields.io/badge/NLPModelsJuMP-0.13.2-8b0000?style=flat-square&labelColor=cb3c33)](https://jso.dev/NLPModelsJuMP.jl/stable/)
10+
[![ADNLPModels 0.8.7](https://img.shields.io/badge/ADNLPModels-0.8.7-8b0000?style=flat-square&labelColor=cb3c33)](https://jso.dev/ADNLPModels.jl/stable/)
11+
![JuMP 1.23.2](https://img.shields.io/badge/JuMP-1.23.2-000?style=flat-square&labelColor=999)
12+
[![OptimizationProblems 0.9.0](https://img.shields.io/badge/OptimizationProblems-0.9.0-8b0000?style=flat-square&labelColor=cb3c33)](https://jso.dev/OptimizationProblems.jl/stable/)
1313

1414

1515

@@ -26,7 +26,7 @@ length(problems)
2626
```
2727

2828
```plaintext
29-
288
29+
372
3030
```
3131

3232

@@ -39,14 +39,14 @@ jump_model = OptimizationProblems.PureJuMP.zangwil3()
3939

4040
```plaintext
4141
A JuMP Model
42-
Minimization problem with:
43-
Variables: 3
44-
Objective function type: Nonlinear
45-
`JuMP.AffExpr`-in-`MathOptInterface.EqualTo{Float64}`: 3 constraints
46-
Model mode: AUTOMATIC
47-
CachingOptimizer state: NO_OPTIMIZER
48-
Solver name: No optimizer attached.
49-
Names registered in the model: constr1, constr2, constr3, x
42+
├ solver: none
43+
├ objective_sense: MIN_SENSE
44+
│ └ objective_function_type: JuMP.AffExpr
45+
├ num_variables: 3
46+
├ num_constraints: 3
47+
│ └ JuMP.AffExpr in MOI.EqualTo{Float64}: 3
48+
└ Names registered in the model
49+
└ :constr1, :constr2, :constr3, :x
5050
```
5151

5252

@@ -59,7 +59,7 @@ length(var_problems)
5959
```
6060

6161
```plaintext
62-
94
62+
95
6363
```
6464

6565

@@ -72,13 +72,13 @@ jump_model_12 = OptimizationProblems.PureJuMP.woods(n=12)
7272

7373
```plaintext
7474
A JuMP Model
75-
Minimization problem with:
76-
Variables: 12
77-
Objective function type: Nonlinear
78-
Model mode: AUTOMATIC
79-
CachingOptimizer state: NO_OPTIMIZER
80-
Solver name: No optimizer attached.
81-
Names registered in the model: x
75+
├ solver: none
76+
├ objective_sense: MIN_SENSE
77+
│ └ objective_function_type: JuMP.NonlinearExpr
78+
├ num_variables: 12
79+
├ num_constraints: 0
80+
└ Names registered in the model
81+
└ :x
8282
```
8383

8484

@@ -89,13 +89,13 @@ jump_model_120 = OptimizationProblems.PureJuMP.woods(n=120)
8989

9090
```plaintext
9191
A JuMP Model
92-
Minimization problem with:
93-
Variables: 120
94-
Objective function type: Nonlinear
95-
Model mode: AUTOMATIC
96-
CachingOptimizer state: NO_OPTIMIZER
97-
Solver name: No optimizer attached.
98-
Names registered in the model: x
92+
├ solver: none
93+
├ objective_sense: MIN_SENSE
94+
│ └ objective_function_type: JuMP.NonlinearExpr
95+
├ num_variables: 120
96+
├ num_constraints: 0
97+
└ Names registered in the model
98+
└ :x
9999
```
100100

101101

@@ -134,7 +134,7 @@ length(problems)
134134
```
135135

136136
```plaintext
137-
288
137+
372
138138
```
139139

140140

@@ -151,8 +151,8 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
151151
ForwardDiffADHvprod,
152152
ForwardDiffADJprod,
153153
ForwardDiffADJtprod,
154-
ForwardDiffADJacobian,
155-
ForwardDiffADHessian,
154+
SparseADJacobian,
155+
SparseADHessian,
156156
ForwardDiffADGHjvprod,
157157
}
158158
Problem name: zangwil3
@@ -163,7 +163,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
163163
low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
164164
fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ████████████████████ 3
165165
infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
166-
nnzh: ( 0.00% sparsity) 6 linear: ████████████████████ 3
166+
nnzh: (100.00% sparsity) 0 linear: ████████████████████ 3
167167
nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
168168
nnzj: ( 0.00% sparsity) 9
169169
@@ -192,7 +192,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
192192
EmptyADbackend,
193193
EmptyADbackend,
194194
EmptyADbackend,
195-
ForwardDiffADHessian,
195+
SparseADHessian,
196196
EmptyADbackend,
197197
}
198198
Problem name: woods
@@ -203,7 +203,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
203203
low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
204204
fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
205205
infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
206-
nnzh: ( 0.00% sparsity) 78 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
206+
nnzh: ( 73.08% sparsity) 21 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
207207
nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
208208
nnzj: (------% sparsity)
209209
@@ -230,7 +230,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
230230
EmptyADbackend,
231231
EmptyADbackend,
232232
EmptyADbackend,
233-
ForwardDiffADHessian,
233+
SparseADHessian,
234234
EmptyADbackend,
235235
}
236236
Problem name: woods
@@ -241,7 +241,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
241241
low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
242242
fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
243243
infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
244-
nnzh: ( 0.00% sparsity) 7260 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
244+
nnzh: ( 97.11% sparsity) 210 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
245245
nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
246246
nnzj: (------% sparsity)
247247
@@ -258,9 +258,9 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
258258

259259

260260

261-
One of the advantages of these problems is that they are type-stable. Indeed, one can specify the output type with the keyword `type` as follows.
261+
One of the advantages of these problems is that they are type-stable. Indeed, one can specify the output type with the keyword `type` as follows. Note that in version < 0.8 the argument was `type=Val(DataType)`.
262262
```julia
263-
nlp16_12 = OptimizationProblems.ADNLPProblems.woods(n=12, type=Val(Float16))
263+
nlp16_12 = OptimizationProblems.ADNLPProblems.woods(n=12, type=Float16)
264264
```
265265

266266
```plaintext
@@ -270,7 +270,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
270270
EmptyADbackend,
271271
EmptyADbackend,
272272
EmptyADbackend,
273-
ForwardDiffADHessian,
273+
SparseADHessian,
274274
EmptyADbackend,
275275
}
276276
Problem name: woods
@@ -281,7 +281,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
281281
low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
282282
fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
283283
infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
284-
nnzh: ( 0.00% sparsity) 78 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
284+
nnzh: ( 73.08% sparsity) 21 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
285285
nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
286286
nnzj: (------% sparsity)
287287

0 commit comments

Comments
 (0)