Skip to content

Latest commit

 

History

History
395 lines (336 loc) · 15 KB

DataPostProc.md

File metadata and controls

395 lines (336 loc) · 15 KB

Datapostprocessors (algorithm, a, b, c, units, name, mode)

Back to Configuration

Data postprocessors modify the data inside the adagucserver before any further operations are applied. The modified data can be visualized using WMS and retrieved using WCS. DataPostprocessors can be for example simple unit conversions from Kelvin to Celsius.

  • algorithm - The Datapostprocessor to choose, e.g. "ax+b"
  • a - Input value a
  • b - Input value b
  • c - Input value c
  • units - The new units of the data.
  • name - name attributes, function depending on the processor
  • mode - additional settings for the processor

Current data postprocessors:

  1. ax+b: Linear transformation ax+b - Suitable for unit conversions
  2. include_layer: Include another layer into your layer as new dataobject
  3. datamask: Mask one variable with another variable with several options
  4. MSGCPP VISIBLE-mask - Display the visible part of the disk
  5. HIWC-mask: Thresholds for detection of “High Ice Water Content” according to HAIC case.
  6. addfeatures: Turn geographical features (areas) into a grid
  7. beaufort: do conversion of wind speeds in m/s or kts to Beaufort values
  8. toknots: do conversion of wind speeds in m/s to kts
  9. windspeed_knots_to_ms: do conversion of wind speeds in kts to m/s

New datapost processors can be implemented via ../../adagucserverEC/CDataPostProcessor.cpp

  1. ax+b: Linear transformation ax+b - Suitable for unit conversions

Example to convert cloudcover fraction to octa:

<DataPostProc algorithm="ax+b" a="8" b="0" units="octa"/>
  1. include_layer: Include another layer into your layer as new dataobject

  • Available since adagucserver version 2.0.9

This processor includes another layer in your current layer. The variables configured in the other layer are added to your new layer. These are visible in the GetFeatureInfo and GetMetadata request. This is for example useful if u and v vectors are in two separate files. This processor allows you to combine them into one layer. Note: The two layers do not need to have the same gridsize and projection, the other layer will be transformed to fit into the new layer. The grids will be made the same.

  • algorithm: should be set to "include_layer"
  • name: the other configured layer you wish to include
  • mode: prepend or append, e.g. will the new layer be put in front of the current variables or after.
<Layer>
  ...
  <Name>theotherlayer</Name>
  ...
</Layer>

<Layer>
  ...
  <Name>combinedlayer</Name>
  <DataPostProc algorithm="include_layer" name="theotherlayer" mode="prepend"/>
  ...
</Layer>

It is for example also possible to create a layer with 3 variables, minimum, average and maximum temperature:

<Layer type="database">
  <Name>t2minlayer</Name>
  <Title>t2minlayer</Title>
  <FilePath>http://opendap.knmi.nl/knmi/thredds/dodsC/ADAGUC/testsets/projectedgrids/t2min.KNMI-2014.KNXT12.HCAST2.DD.nc.fixed.nc</FilePath>
  <Variable>t2min</Variable>
  <Styles>auto</Styles>
</Layer>

<Layer type="database">
  <Name>t2maxlayer</Name>
  <Title>t2maxlayer</Title>
  <FilePath>http://opendap.knmi.nl/knmi/thredds/dodsC/ADAGUC/testsets/projectedgrids/t2max.KNMI-2014.KNXT12.HCAST2.DD.nc.fixed.nc</FilePath>
  <Variable>t2max</Variable>
  <Styles>auto</Styles>
</Layer>

<Layer type="database">
  <Name>combinedlayer</Name>
  <Title>combinedlayer</Title>
  <FilePath>http://opendap.knmi.nl/knmi/thredds/dodsC/ADAGUC/testsets/projectedgrids/t2m.KNMI-2014.KNXT12.HCAST2.DD.nc.fixed.nc</FilePath>
  <Variable>t2m</Variable>
  <Styles>auto</Styles>
  <Min>250</Min>
  <Max>300</Max>
  <DataPostProc algorithm="include_layer" name="t2minlayer" mode="prepend"/>
  <DataPostProc algorithm="include_layer" name="t2maxlayer" mode="append"/>
</Layer>

A get featureinfo request will show the 3 values for a point:

Coordinates - (lon=5.25; lat=51.96)
Minimum 2-m Temperature (secondlayer)
     -    Minimum 2-m Temperature    279.701904    K
     -    2-m Temperature    281.849213    K
     -    Maximum 2-m Temperature    284.590302    K
  1. datamask: Mask one variable with another variable with several options

  • Available since adagucserver version 2.0.9

This datapostproc allows to mask a layer with two variables defined. The first variable is the data and the second variable is the mask.

  • algorithm: should be set to "datamask"
  • a : the lower comparison value. All values higher or equal to a are included as mask
  • b : the upper comparison value. All values lower or equal to a are included as mask
    • Mask is active when a>=maskvalue and b<=maskvalue.
  • mode : optional, the masking operation, can be
    • if_mask_includes_then_nodata_else_data, fills in nodata, e.g. areas become transparent
    • if_mask_excludes_then_nodata_else_data, fills in nodata, e.g. areas become transparent
    • if_mask_includes_then_valuec_else_data, value c will be used
    • if_mask_excludes_then_valuec_else_data, value c will be used
    • if_mask_includes_then_mask_else_data, combines the sets
    • if_mask_excludes_then_mask_else_data, combines the sets
  • c : optional, the value to write when mask applies
  • name : optional, the new long_name of the mask
  • units : optional, the new units of the mask

Example usage:

<DataPostProc algorithm="datamask" a="0" b="0" name="newmask" units="newunits" c="0" mode="if_mask_excludes_then_nodata_else_data"/>

Two variables need to be defined in the layer. This can be done by adding an extra ...varname.. element in the Layer config if the corresponding file has the two variables. If the masking variable is in another file, it can be added by using the datapostproc include_layer. The example below uses two different files with different grid to create a masked result.

Study case: Only display temperature field where precipitation is zero

This example demonstrates how a temperature field can be masked by precipitation. By using the include_layer postproc first, the layer gets two variables. The first variable is the temperature from the KNMI next scenarios, the second variable is precipitation from EOBS gridded observations. Both grids are very different and are regridded to the grid as used by the temperature variable (e.g. the original variable from this layer).

Configuration which has been used to create image above:

<Layer type="database">
    <Name>temperature</Name>
    <Title>temperature</Title>
    <FilePath>http://opendap.knmi.nl/knmi/thredds/dodsC/ADAGUC/testsets/projectedgrids/t2m.KNMI-2014.KNXT12.HCAST2.DD.nc.fixed.nc</FilePath>
    <Variable>t2m</Variable>
    <Styles>auto</Styles>
    <Min>250</Min>
    <Max>300</Max>
  </Layer>

  <Layer type="database">
    <Name>precipitation</Name>
    <Title>precipitation</Title>
    <FilePath>http://opendap.knmi.nl/knmi/thredds/dodsC/e-obs_0.25regular/rr_0.25deg_reg_v15.0.nc</FilePath>
    <Variable>rr</Variable>
    <Styles>auto</Styles>
  </Layer>

  <Layer type="database">
    <Name>masked</Name>
    <Title>masked</Title>
    <FilePath>http://opendap.knmi.nl/knmi/thredds/dodsC/ADAGUC/testsets/projectedgrids/t2m.KNMI-2014.KNXT12.HCAST2.DD.nc.fixed.nc</FilePath>
    <Variable>t2m</Variable>
    <Styles>auto</Styles>
    <Min>250</Min>
    <Max>300</Max>
    <DataPostProc algorithm="include_layer" name="precipitation" mode="append"/>
    <DataPostProc algorithm="datamask" a="0" b="0" name="newmask" units="newunits" c="0" mode="if_mask_excludes_then_nodata_else_data"/>
  </Layer>
  1. MSGCPP VISIBLE-mask - Display the visible part of the disk

Based on sunz and satz. Parameter a is sunz+satz threshold and b is satz threshold

<Layer type="database">
    <Group value="auxiliary" />
    <Name force="true">mask</Name>
    <Title>Mask (-)</Title>
    <DataBaseTable>msgcpp_0001</DataBaseTable>
    <Variable>sunz</Variable>
    <Variable>satz</Variable>
    <RenderMethod>nearest</RenderMethod>
    <FilePath filter="^SEVIR_OPER_R___MSGCPP__L2.*\.nc$">/data/ogcrt/data/temporary/</FilePath>
    <Styles>mask,red,green,blue</Styles>
    <Dimension name="time" interval="PT15M">time</Dimension>
    <LatLonBox minx="-80" maxx="80" miny="-82" maxy="82" />
    <Cache enabled="false" />
    <DataPostProc algorithm="msgcppvisiblemask" a="78" b="80" />
    <ImageText>source: EUMETSAT/KNMI</ImageText>
  </Layer>
  1. MSGCPP HIWC-mask - Used for detecting high ice water content derived from four input variables.

MSGCPP HIWC-mask: Thresholds for detection of “High Ice Water Content” according to HAIC case. * - The cloud phase is ice * - Cloud water path is > 0.1 kg/m2 * - Cloud top temperature < 270 K * - Cloud optical thickness > 20

 <Layer type="database">
    <Group value="auxiliary" />
    <Name force="true">hiwc</Name>
    <Title>High Ice Water Content (-)</Title>
    <DataBaseTable>msgcpp_0001</DataBaseTable>
    <Variable>cph</Variable>
    <Variable>cwp</Variable>
    <Variable>ctt</Variable>
    <Variable>cot</Variable>
    <RenderMethod>nearest</RenderMethod>
    <FilePath filter="^SEVIR_OPER_R___MSGCPP__L2.*\.nc$">/data/ogcrt/data/temporary/</FilePath>
    <Styles>red,green,blue,mask,gray_red,gray_green,gray_blue</Styles>
    <Dimension name="time" interval="PT15M">time</Dimension>
    <LatLonBox minx="-80" maxx="80" miny="-82" maxy="82" />
    <Cache enabled="false" />
    <DataPostProc algorithm="msgcpphiwcmask" a="78" b="80" />
    <ImageText>source: EUMETSAT/KNMI</ImageText>
  </Layer>
  1. Colour geographical features according to point values

A common case is to have data for a set of geographical features, for example mean wind per province. These data can be stored in a netCDF file as point data. A geoJSON file with the geographical information for the features can then be coupled to the point data (by matching station name in the point file with the name or id property in the geoJSON file). This enables ADAGUC to draw the geographical features, coloured according to the value in the point file.

For example, let's say we have a netCDF poimt file with the maximum windspeed for 3 areas:

ncdump  windareas.nc
netcdf windareas {
dimensions:
        time = 1 ;
        station = 3 ;
variables:
        double time(time) ;
                time:standard_name = "time" ;
                time:units = "seconds since 1970-1-1" ;
        double lon(station) ;
                lon:standard_name = "longitude" ;
                lon:units = "degrees_east" ;
        double lat(station) ;
                lat:standard_name = "latitude" ;
                lat:units = "degrees_north" ;
        string station(station) ;
                station:long_name = "station_name" ;
                station:cf_role = "timeseries_id" ;
        double maxw(station, time) ;
                maxw:units = "m/s" ;
                maxw:standard_name = "maximum_windspeed" ;
                maxw:grid_mapping = "projection" ;
        char projection ;
                projection:proj4 = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" ;

// global attributes:
                :Conventions = "CF-1.5" ;
                :featureType = "timeSeries" ;
data:
 time = 1458226800 ;
 lon = 4.86, 5.73, 6.61 ;
 lat = 52.8, 53.04, 53.17 ;
 station = "23", "34", "67" ;
 maxw =
  30.2,
  18.2,
  6.5 ;
 projection = "" ;
}

As point data this file could be displayed as:

The geographical information for the wind areas could be in the windareas.geojson file:

{ "type":"FeatureCollection","bbox":[2.0,48.0,8.0,55.0],
"features":[
  {"type":"Feature","id":"67", "properties":{"name":"GR"},"geometry":{"type":"Polygon","coordinates":[[[6.976318359375,53.4291738804146],[6.13037109375,53.40298249424814],[6.15234375,52.928774525801366],[7.05322265625,52.93539665862318],[6.976318359375,53.4291738804146]]]}},
  {"type":"Feature","id":"34", "properties":{"name":"FR"},"geometry":{"type":"Polygon","coordinates":[[[6.141357421875,53.409531853086435],[5.38330078125,53.32431151982718],[5.328369140625,52.796119005678506],[6.15234375,52.80940281068805],[6.141357421875,53.409531853086435]]]}},
  {"type":"Feature","id":"23", "properties":{"name":"WFR"},"geometry":{"type":"Polygon","coordinates":[[[4.6,52.7],[4.6,53],[5.2,53],[5.2,52.7],[4.6,52.7]]]}}
]}

The addfeature datapostproc can join these two files, by generating a grid where each grid cell has the value of the maxwind in the grid cell it belongs to. The DataPostProc element would be defined in a layer like this:

  <Layer type="database" hidden="false">
    <Name>windareas</Name>
    <Title>Wind Areas</Title>
    <Variable>maxw</Variable>
    <DataPostProc a="/usr/people/vreedede/nob/adaguc_gladheid/testgeojson/data/map.geojson" algorithm="addfeatures"/>
    <FilePath filter="windareas.nc$">/usr/people/vreedede/nob/adaguc_gladheid/testgeojson/data</FilePath>
    <Styles>weatherall</Styles>
  </Layer>

The result could be a display of values for the entire areas:

The really interesting thing is that an actual data grid is generated from the point data. This grid can be used to draw a map with a WMS call, but can also be downloaded through a WCS call, to be used in further processing.

  1. Calculate windshear.
<?xml version="1.0" encoding="UTF-8" ?>
<Configuration>

    <Layer type="database" hidden="true">
        <Name>layer_windspeed_at_120</Name>
        <Title>Wind speed at 120 meter</Title>
        <FilePath filter=".*\.nc$" gfi_openall="true">/data/adaguc-autowms/WINS50_43h21_fERA5_WFP_ptA_NETHERLANDS.NL_20190101.nc</FilePath>
        <Variable orgname="wspeed" long_name="Wind speed at 120 meter">var_wind_speed_at_120</Variable>
        <Styles>auto</Styles>
        <Dimension name="time">time</Dimension>
        <Dimension name="height" fixvalue="120" hidden="true">elevation</Dimension>
    </Layer>


    <Layer type="database">
        <Name>output</Name>
        <Title>Wind speed at 120 minus wind speed at 200</Title>
        <FilePath filter=".*\.nc$" gfi_openall="true">/data/adaguc-autowms/WINS50_43h21_fERA5_WFP_ptA_NETHERLANDS.NL_20190101.nc</FilePath>
        <Variable orgname="wspeed" long_name="Wind speed at 200 meter">var_wind_speed_at_200</Variable>
        <Dimension name="time">time</Dimension>
        <Dimension name="height" fixvalue="200" hidden="true">elevation</Dimension>

        <DataPostProc algorithm="include_layer" name="layer_windspeed_at_120" mode="append"/>
        <DataPostProc algorithm="operator" mode="-" a="var_wind_speed_at_120" b="var_wind_speed_at_200" name="output" units="m/s"/>
        <Min>-1</Min>
        <Max>1</Max>
        <Styles>auto</Styles>

    </Layer>


</Configuration>