Reproducible analysis for Sanchez-Contreras M and Sweetwyne MT, et al., Elife, 12:e83395, 2023. https://doi.org/10.7554/eLife.83395
Repository contains the necessary data and python scripts to generate nearly all of the figures and reported p-values. Reproducibility is done using Snakemake
Snakemake Anaconda/miniconda
- 'compile_data.py': Reads the individual data and/or summary files and compiles them into
.csv
files used for plotting (stored in the 'data/imported_data' subdirectory).
- 'compute_stats.py': Computes p-values used to establish significance and then reports them as
.csv
files for each figure or subfigure. Specific figure is indicated in the file name (stored in thedata/stats/
subdirectory) - 'fold_change.R': Computes the fold change and p-values using the
mratios
R package used inFigure 3
. - 'Dunnett_test.R': Computes the adjusted p-value using the
DescTools
R package and used inFigure 6
.
The scripts generate each of the figures in the paper. They are contained in .py
files with names corresponding to the relevant figure.
- 'GlobalVars_.py': Contains global variables used across multiple figure generation and analysis scripts.
- 'HelperFuncs_.py': Functions used for formatting data
- 'run.py': A standalone script that will generate the figures and statistical files without Snakemake or conda.
- Install Conda or Miniconda
- Install Snakemake and Mamba (
conda install snakemake mamba
) - Clone the repository
- Setup the environment (
snakemake --cores 1 --use-conda --conda-frontend mamba --conda-prefix .snakemake -- initializeEnvs
) - Perform reproducibile analysis (
snakemake -s snakefile --use-conda --keep-going -j 1 --conda-prefix .snakemake
)