-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_stats.py
222 lines (148 loc) · 7.64 KB
/
compute_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 9 09:36:16 2022
@author: scottrk
"""
import os
from collections import defaultdict
import scipy.stats as stats
import pandas as pd
from compile_data import summary_import, melt_summary, mut_file_import, \
calc_clone_numbers
from GlobalVars_ import tissue_type, mut_type, mut_type_conv, tissue_type_abbrev, \
R_lib_path
from HelperFuncs_ import statsmodel_summary_to_df
import numpy as np
from statsmodels.stats.multicomp import pairwise_tukeyhsd
import rpy2.robjects as robjects
def Fig1A_D_stats(data, mut_class, output=None):
p_value_dict = defaultdict(lambda:[])
for tissue in tissue_type_abbrev[: -1]:
young_data = data.query("Age=='Young' & Tissue==@tissue & Treatment=='NT'")
old_data = data.query("Age=='Old' & Tissue==@tissue & Treatment=='NT'")
F_stat, p_value = stats.ttest_ind(young_data[mut_class], old_data[mut_class],
equal_var=False)
p_value_dict[tissue].append(p_value)
if output != None:
if os.path.isdir("data/stats/") == False:
os.mkdir("data/stats/")
pvalues = pd.DataFrame(p_value_dict).to_csv(output)
return p_value_dict
def anova_df(df, cohort, mut_class):
data = []
for tissue in tissue_type_abbrev[: -1]:
sub_data = df.query("Age==@cohort & Treatment=='NT' & Tissue==@tissue & Class==@mut_class")
data.append(sub_data['Frequency'])
f_stat, p_val = stats.f_oneway(data[0], data[1], data[2], data[3], data[4],
data[5], data[6], data[7])
tukey_data = df.query("Age==@cohort & Treatment=='NT' & Class==@mut_class")
tukey = pairwise_tukeyhsd(endog=tukey_data['Frequency'],
groups=tukey_data['Tissue'])
return p_val, tukey
def heatmap_stats(data, cohort, mut_class, output=None):
tukey_p_val = defaultdict(lambda:[])
p_val, anova = anova_df(data, cohort, mut_class)
statsmodel_df = statsmodel_summary_to_df(anova)
for tissue1 in tissue_type_abbrev[:-1]:
for tissue2 in tissue_type_abbrev[:-1]:
df = statsmodel_df.query("group1==@tissue1 | group2==@tissue1")
x = df.query("group1==@tissue2 | group2==@tissue2")['p-adj']
if tissue1 != tissue2:
tukey_p_val[tissue1].append(float(x))
else:
tukey_p_val[tissue1].append(np.nan)
pvals_df = pd.DataFrame(tukey_p_val)
pvals_df.index = tissue_type[:-1]
pvals_df = pvals_df.T
if output != None:
if os.path.isdir("data/stats/") == False:
os.mkdir("data/stats/")
pvals_df.to_csv(output)
return pvals_df
def Fig3C_stats(lib_loc):
r_source = robjects.r['source']
if os.path.isdir('data/stats/') == False:
os.mkdir('data/stats/')
#output = open("data/stats/Figure_2_ratio_statistics.csv", 'w')
r_source('fold_changes.R')
#output.close()
def Fig4A_B_stats(data, column_name, output):
clone_percent_pvals = {tissue: 0 for tissue in tissue_type[: -1]}
for tissue in tissue_type_abbrev[: -1]:
old = stats.ttest_ind(data.query("Tissue==@tissue & Cohort=='Old'")[column_name],
data.query("Tissue==@tissue & Cohort=='Young'")[column_name],
equal_var=False)
clone_percent_pvals[tissue] = old.pvalue
pvalues = pd.DataFrame(clone_percent_pvals, columns=tissue_type[:-1],
index=["Clone Percent P-values"])
if os.path.isdir("data/stats/") == False:
os.mkdir("data/stats/")
pvalues.to_csv(output)
return pvalues
def Fig6_stats(lib_loc):
r_source = robjects.r('source')
if os.path.isdir('data/stats/') == False:
os.mkdir('data/stats/')
#output = open("data/stats/Figure_5_Dunnett_statistics.csv", 'w')
r_source('Dunnett_test.R')
#output.close()
def Figure_6_figure_supplement_3_stats(clone_freq_df, output):
pvalue_list = []
for tissue in ['K', 'L', 'Hi', 'C', 'M', 'B']:
test = stats.ttest_ind(clone_freq_df.query("Tissue==@tissue & Cohort=='Old'")['Clone_Freq'],
clone_freq_df.query("Tissue==@tissue & Cohort=='perf'")['Clone_Freq'],
equal_var=False )
pvalue_list.append(test.pvalue)
pvalues = pd.DataFrame(pvalue_list, index=['K', 'L', 'Hi', 'C', 'M','B'], columns=['P value'])
if not os.path.isdir("data/stats/"):
os.mkdir("data/stats/")
pvalues.to_csv(output)
return pvalues
if __name__ == "__main__":
# Import data
if not os.path.isfile("data/imported_data/summary_data_wide.csv"):
if not os.path.isdir("data/imported_data/"):
os.mkdir("data/imported_data/")
summary_data = summary_import('data/Mouse_aging_mtDNA_summary.csv')
summary_data.to_csv("data/imported_data/summary_data_wide.csv")
else:
summary_data = pd.read_csv("data/imported_data/summary_data_wide.csv")
if not os.path.isfile('data/imported_data/summary_data_tidy.csv'):
summary_data_long = melt_summary(summary_data)
summary_data_long.to_csv("data/imported_data/summary_data_tidy.csv")
else:
summary_data_long = pd.read_csv("data/imported_data/summary_data_tidy.csv")
if not os.path.isfile("data/imported_data/mut_file_data.csv"):
mut_data = mut_file_import()
mut_data.to_csv("data/imported_data/mut_file_data.csv")
else:
mut_data = pd.read_csv("data/imported_data/mut_file_data.csv",
index_col=[0, 1])
if not os.path.isfile("data/imported_data/summary_clone_data.csv"):
final_clone_data = calc_clone_numbers(mut_data)
final_clone_data.to_csv("data/imported_data/summary_clone_data.csv")
else:
final_clone_data = pd.read_csv("data/imported_data/summary_clone_data.csv",
index_col=0)
# Figure 1 statistics
Fig1A_D_stats(summary_data, "Total_SNV_Freq", "data/stats/Figure_1A_statistics.csv")
Fig1A_D_stats(summary_data, "Total_InDel_Freq", "data/stats/Figure_1D_statistics.csv")
heatmap_stats(summary_data_long, "Young", 'Total_SNV_Freq', "data/stats/Figure_1A_Young_heatmap_stats.csv")
heatmap_stats(summary_data_long, "Old", 'Total_SNV_Freq', "data/stats/Figure_1A_Old_heatmap_stats.csv")
heatmap_stats(summary_data_long, "Young", 'Total_InDel_Freq', "data/stats/Figure_1D_Young_heatmap_stats.csv")
heatmap_stats(summary_data_long, "Old", 'Total_InDel_Freq', "data/stats/Figure_1D_Old_heatmap_stats.csv")
# Figure 3A-B statistics
for age in ['Young', 'Old']:
for i, mut_class in enumerate(mut_type):
heatmap_stats(summary_data_long, age, mut_class, "data/stats/Figure_3_" +
age + "_" + mut_type_conv[mut_class] + "_heatmap_stats.csv")
# Figure 3C statistics
Fig3C_stats(R_lib_path) # change package location as necessary
# Figure 4 statistics
Fig4A_B_stats(final_clone_data, "Percent_Clone", "data/stats/Figure_4A_statistics.csv")
Fig4A_B_stats(final_clone_data, "Clone_Freq", "data/stats/Figure_4B_statistics.csv")
#Figure 6 statistics
Fig6_stats(R_lib_path)
#Figure 6-figure_supplement 3 statistics
Figure_6_figure_supplement_3_stats(final_clone_data, "data/stats/Figure_6_figure_supplement_3_statistics.csv")